LAMRec: Label-aware Multi-view Drug Recommendation

计算机科学 药品 多标签分类 推荐系统 情报检索 人工智能 医学 药理学
作者
Yunsen Tang,Ning Liu,Haitao Yuan,Yingnan Yan,Lei Liu,Weixing Tan,Lizhen Cui
标识
DOI:10.1145/3627673.3679656
摘要

The drug recommendation task aims to predict safe and effective drug prescriptions based on the patients' historical electronic health records (EHRs). However, existing drug recommendation models generally have two limitations. First, they neglect the inherent characteristics of multiple views existing in patients' clinical data (e.g., diagnoses and procedures), leading to fragmented and inconsistent patient representations. Second, they do not fully exploit drug label information. Most models do not explicitly establish a mapping relationship between drug labels and patients' historical visits. To address these two problems, we proposed a label-aware multi-view drug recommendation model named LAMRec. In particular, LAMRec uses a cross-attention module to fuse information from the diagnosis and procedure views, and increases the mutual information of patient multi-view representations through multi-view contrastive loss; the label-wise attention mechanism fully explores drug label information by constructing an adaptive mapping of drug-visit to generate personalized representations that are aware of the drug-related visit information. Experiments on three real world medical datasets demonstrated the superiority of LAMRec, with a relative reduction of 5.25% in DDI compared to the optimal baseline, a relative improvement of 4.20% in Jaccard similarity scores, and a relative improvement of 3.10% in F1 scores. We released the code online at: https://github.com/Tyunsen/LAMRec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangsi完成签到 ,获得积分10
刚刚
1秒前
cuber完成签到 ,获得积分10
1秒前
1秒前
2秒前
干净利落完成签到,获得积分10
2秒前
sx发布了新的文献求助10
2秒前
冷酷的可乐完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Tina完成签到,获得积分10
3秒前
3秒前
Hohai完成签到,获得积分10
3秒前
啦啦啦发布了新的文献求助10
4秒前
4秒前
樱桃小丸子完成签到,获得积分10
4秒前
打打应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
biomichael完成签到,获得积分10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得20
5秒前
科目三应助科研通管家采纳,获得10
5秒前
小涛完成签到,获得积分10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
椰子在长江送礼物应助o30采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836