生物
SOCS3
结肠炎
细胞生物学
信号转导
车站3
免疫学
作者
Ling‐Li Zeng,Yuping Wang,Jiaxin Shen,Xujin Wei,Yilong Wu,Xintong Chi,Xueyan Zheng,Xing Yu,Ying Shi,W X Liu
标识
DOI:10.1016/j.yexcr.2024.114287
摘要
Ulcerative colitis (UC) is a chronic relapsing and progressive inflammatory disease of the colon. TIPE2 is a negative regulator of innate and adaptive immunity that maintains immune homeostasis. We found that TIPE2 was highly expressed in mucosa of mice with colitis. However, the role of TIPE2 in colitis remains unclear. We induced colitis in mice with dextran sulphate sodium (DSS) and treated them with TIPE2, and investigated the inflammatory activity of the colon in vivo by cytokines detection and histopathological analyses. We also measured inflammatory alteration and tight junctions induced by DSS in vitro. The results demonstrated that administration of TIPE2 promoted the severity of colitis in mice and human colon epithelial cells. Furthermore, TIPE2 aggravated intestinal epithelial barrier dysfunction by decreasing the expression of the tight junction proteins Occludin, Claudin-1 and ZO-1. In addition, TIPE2 exacerbated intestinal inflammatory response by inhibiting the expression of SOCS3, remarkably activating JAK2/STAT3 signaling pathway, and increasing the translocation of phosphorylated STAT3 into the nucleus. Silencing of Tipe2 attenuated the DSS-induced activation of JAK2/STAT3, thereby rescuing epithelial inflammatory injury and restoring barrier dysfunction. These results indicate that TIPE2 augments experimental colitis and disrupted the integrity of the intestinal epithelial barrier by activating the JAK2/STAT3/SOCS3 signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI