A source free robust domain adaptation approach with pseudo-labels uncertainty estimation for rolling bearing fault diagnosis under limited sample conditions

域适应 方位(导航) 断层(地质) 适应(眼睛) 样品(材料) 估计 领域(数学分析) 计算机科学 模式识别(心理学) 可靠性工程 数据挖掘 人工智能 工程类 数学 地质学 地震学 心理学 系统工程 分类器(UML) 数学分析 化学 色谱法 神经科学
作者
Ruiqi Liu,Wengang Ma,Feipeng Kuang,Guo Jin,Ning Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:304: 112443-112443 被引量:1
标识
DOI:10.1016/j.knosys.2024.112443
摘要

As essential components of machinery equipment, rolling bearings directly affect the safety of the machinery equipment. The timely diagnosis of bearing faults can effectively prevent equipment lapses. However, bearings are often inconsistently distributed. This has resulted in a significant decrease in their availability. Moreover, the performances of traditional models are poor when fault samples are scarce. The unsupervised domain adaptation (UDA) model based on the transfer learning theory can solve the above problems in static scenarios. However, source domain data are often not directly accessible for privacy protection. Therefore, achieving the robustness of UDA models is significantly challenging. Source-free UDA can achieve a positive transfer from the source domain to the target domain based only on a pretrained source-domain model and unlabeled target-domain data. In this study, we built a source-free robust UDA approach with pseudo-label uncertainty estimation (SFRDA-PLUE) for diagnosing bearing faults using a limited number of samples. First, we designed a robust feature extractor (SANet) and proposed a novel binary soft-constrained information entropy. This was applied to solve the problem that standard information entropy cannot effectively estimate the uncertainty of pseudo-labels. In addition, we constructed a weighted comparison filter strategy to smoothen the fuzzy samples. Finally, we introduced an information-maximizing loss strategy to optimize the performance of the source domain classifier and the pseudo-label estimator. Thus, the robustness of the pseudo-label uncertainty estimation was significantly improved. The experimental results validated that the SFRDA-PLUE approach can achieve excellent diagnostic performance under a limited number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
城南完成签到,获得积分10
1秒前
1秒前
桐桐应助柳絮采纳,获得10
1秒前
猪肉超人菜婴蚊完成签到,获得积分10
1秒前
找不到文献扣脑壳完成签到,获得积分10
2秒前
Sunny完成签到 ,获得积分10
2秒前
nya完成签到,获得积分10
2秒前
内向的白玉完成签到 ,获得积分10
2秒前
谷雨完成签到,获得积分10
2秒前
从容不乐发布了新的文献求助10
3秒前
超级绫完成签到,获得积分10
3秒前
dunganli发布了新的文献求助10
3秒前
3秒前
zhao完成签到,获得积分10
3秒前
能谱曲线完成签到,获得积分10
4秒前
4秒前
N_wh完成签到,获得积分10
4秒前
YDM完成签到,获得积分10
4秒前
4秒前
5秒前
完美书易完成签到 ,获得积分10
5秒前
高大语蕊完成签到,获得积分10
6秒前
6秒前
充电宝应助超级绫采纳,获得10
6秒前
2150号完成签到,获得积分10
7秒前
oyy318完成签到,获得积分10
7秒前
欣慰乘风完成签到,获得积分10
7秒前
7秒前
N_wh发布了新的文献求助10
7秒前
xinyuexinsi完成签到 ,获得积分10
7秒前
研友_Z119gZ完成签到 ,获得积分10
8秒前
8秒前
vetXue完成签到,获得积分10
9秒前
9秒前
调皮赛君发布了新的文献求助10
9秒前
Danielle完成签到,获得积分10
10秒前
yue957发布了新的文献求助10
10秒前
2150号发布了新的文献求助10
10秒前
11秒前
木瓜完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067859
求助须知:如何正确求助?哪些是违规求助? 4289584
关于积分的说明 13364143
捐赠科研通 4109306
什么是DOI,文献DOI怎么找? 2250244
邀请新用户注册赠送积分活动 1255622
关于科研通互助平台的介绍 1188153