A source free robust domain adaptation approach with pseudo-labels uncertainty estimation for rolling bearing fault diagnosis under limited sample conditions

域适应 方位(导航) 断层(地质) 适应(眼睛) 样品(材料) 估计 领域(数学分析) 计算机科学 模式识别(心理学) 可靠性工程 数据挖掘 人工智能 工程类 数学 地质学 地震学 心理学 系统工程 分类器(UML) 数学分析 化学 色谱法 神经科学
作者
Ruiqi Liu,Wengang Ma,Feipeng Kuang,Guo Jin,Ning Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:304: 112443-112443 被引量:1
标识
DOI:10.1016/j.knosys.2024.112443
摘要

As essential components of machinery equipment, rolling bearings directly affect the safety of the machinery equipment. The timely diagnosis of bearing faults can effectively prevent equipment lapses. However, bearings are often inconsistently distributed. This has resulted in a significant decrease in their availability. Moreover, the performances of traditional models are poor when fault samples are scarce. The unsupervised domain adaptation (UDA) model based on the transfer learning theory can solve the above problems in static scenarios. However, source domain data are often not directly accessible for privacy protection. Therefore, achieving the robustness of UDA models is significantly challenging. Source-free UDA can achieve a positive transfer from the source domain to the target domain based only on a pretrained source-domain model and unlabeled target-domain data. In this study, we built a source-free robust UDA approach with pseudo-label uncertainty estimation (SFRDA-PLUE) for diagnosing bearing faults using a limited number of samples. First, we designed a robust feature extractor (SANet) and proposed a novel binary soft-constrained information entropy. This was applied to solve the problem that standard information entropy cannot effectively estimate the uncertainty of pseudo-labels. In addition, we constructed a weighted comparison filter strategy to smoothen the fuzzy samples. Finally, we introduced an information-maximizing loss strategy to optimize the performance of the source domain classifier and the pseudo-label estimator. Thus, the robustness of the pseudo-label uncertainty estimation was significantly improved. The experimental results validated that the SFRDA-PLUE approach can achieve excellent diagnostic performance under a limited number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
漂亮白枫完成签到,获得积分10
2秒前
情怀应助why359采纳,获得10
2秒前
CodeCraft应助wsj采纳,获得10
2秒前
2秒前
领导范儿应助DoctorDiDi采纳,获得10
2秒前
LaTeXer应助勤恳白山采纳,获得80
2秒前
5秒前
小爪冰凉发布了新的文献求助30
5秒前
6秒前
漂亮白枫发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
优雅灵波发布了新的文献求助10
8秒前
kong完成签到,获得积分10
9秒前
9秒前
JJ发布了新的文献求助10
9秒前
幸福大白发布了新的文献求助10
10秒前
11秒前
11秒前
123完成签到,获得积分10
11秒前
Qing完成签到,获得积分10
12秒前
小二郎应助搞笑5次采纳,获得10
12秒前
ZONG发布了新的文献求助20
14秒前
yyyyyyy发布了新的文献求助10
15秒前
勤奋幻柏发布了新的文献求助10
15秒前
why359发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
hahah完成签到,获得积分10
20秒前
伶俐绿柏发布了新的文献求助10
22秒前
狸宝的小果子完成签到 ,获得积分10
22秒前
汉堡包应助wzc采纳,获得10
22秒前
深情安青应助刀锋采纳,获得10
23秒前
Lc应助古月采纳,获得10
24秒前
why359完成签到,获得积分10
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989450
求助须知:如何正确求助?哪些是违规求助? 3531621
关于积分的说明 11254315
捐赠科研通 3270207
什么是DOI,文献DOI怎么找? 1804928
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809176