A source free robust domain adaptation approach with pseudo-labels uncertainty estimation for rolling bearing fault diagnosis under limited sample conditions

域适应 方位(导航) 断层(地质) 适应(眼睛) 样品(材料) 估计 领域(数学分析) 计算机科学 模式识别(心理学) 可靠性工程 数据挖掘 人工智能 工程类 数学 地质学 地震学 心理学 系统工程 神经科学 化学 数学分析 分类器(UML) 色谱法
作者
Ruiqi Liu,Wengang Ma,Feipeng Kuang,Guo Jin,Ning Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:304: 112443-112443 被引量:1
标识
DOI:10.1016/j.knosys.2024.112443
摘要

As essential components of machinery equipment, rolling bearings directly affect the safety of the machinery equipment. The timely diagnosis of bearing faults can effectively prevent equipment lapses. However, bearings are often inconsistently distributed. This has resulted in a significant decrease in their availability. Moreover, the performances of traditional models are poor when fault samples are scarce. The unsupervised domain adaptation (UDA) model based on the transfer learning theory can solve the above problems in static scenarios. However, source domain data are often not directly accessible for privacy protection. Therefore, achieving the robustness of UDA models is significantly challenging. Source-free UDA can achieve a positive transfer from the source domain to the target domain based only on a pretrained source-domain model and unlabeled target-domain data. In this study, we built a source-free robust UDA approach with pseudo-label uncertainty estimation (SFRDA-PLUE) for diagnosing bearing faults using a limited number of samples. First, we designed a robust feature extractor (SANet) and proposed a novel binary soft-constrained information entropy. This was applied to solve the problem that standard information entropy cannot effectively estimate the uncertainty of pseudo-labels. In addition, we constructed a weighted comparison filter strategy to smoothen the fuzzy samples. Finally, we introduced an information-maximizing loss strategy to optimize the performance of the source domain classifier and the pseudo-label estimator. Thus, the robustness of the pseudo-label uncertainty estimation was significantly improved. The experimental results validated that the SFRDA-PLUE approach can achieve excellent diagnostic performance under a limited number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助辰枫采纳,获得10
1秒前
如意小丸子完成签到,获得积分10
2秒前
打老虎发布了新的文献求助10
2秒前
是小小李哇完成签到 ,获得积分10
4秒前
浮游应助余佘采纳,获得10
5秒前
西蓝花战士完成签到,获得积分10
8秒前
9秒前
10秒前
勤奋的灯完成签到,获得积分10
10秒前
邸增楼完成签到 ,获得积分10
11秒前
lynn完成签到,获得积分10
11秒前
奎玖关注了科研通微信公众号
12秒前
13秒前
sun关注了科研通微信公众号
13秒前
water完成签到,获得积分10
13秒前
13秒前
徐笑松发布了新的文献求助10
14秒前
niuniu完成签到 ,获得积分10
15秒前
16秒前
xiaoma完成签到,获得积分20
16秒前
16秒前
勤奋的灯发布了新的文献求助10
17秒前
田超发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
lynn221204发布了新的文献求助10
19秒前
雷家发布了新的文献求助10
20秒前
jing发布了新的文献求助10
21秒前
22秒前
ych发布了新的文献求助10
22秒前
小合完成签到,获得积分10
24秒前
平淡雅阳完成签到,获得积分10
26秒前
hyxu678发布了新的文献求助10
26秒前
26秒前
科研通AI6应助清如采纳,获得10
26秒前
早日毕业完成签到,获得积分10
26秒前
27秒前
少女徐必成完成签到 ,获得积分10
27秒前
浮游应助余佘采纳,获得10
29秒前
sun发布了新的文献求助10
30秒前
坚强胡萝卜完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573818
求助须知:如何正确求助?哪些是违规求助? 3994068
关于积分的说明 12364512
捐赠科研通 3667269
什么是DOI,文献DOI怎么找? 2021183
邀请新用户注册赠送积分活动 1055282
科研通“疑难数据库(出版商)”最低求助积分说明 942694