A source free robust domain adaptation approach with pseudo-labels uncertainty estimation for rolling bearing fault diagnosis under limited sample conditions

域适应 方位(导航) 断层(地质) 适应(眼睛) 样品(材料) 估计 领域(数学分析) 计算机科学 模式识别(心理学) 可靠性工程 数据挖掘 人工智能 工程类 数学 地质学 地震学 心理学 系统工程 神经科学 化学 数学分析 分类器(UML) 色谱法
作者
Ruiqi Liu,Wengang Ma,Feipeng Kuang,Guo Jin,Ning Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:304: 112443-112443 被引量:1
标识
DOI:10.1016/j.knosys.2024.112443
摘要

As essential components of machinery equipment, rolling bearings directly affect the safety of the machinery equipment. The timely diagnosis of bearing faults can effectively prevent equipment lapses. However, bearings are often inconsistently distributed. This has resulted in a significant decrease in their availability. Moreover, the performances of traditional models are poor when fault samples are scarce. The unsupervised domain adaptation (UDA) model based on the transfer learning theory can solve the above problems in static scenarios. However, source domain data are often not directly accessible for privacy protection. Therefore, achieving the robustness of UDA models is significantly challenging. Source-free UDA can achieve a positive transfer from the source domain to the target domain based only on a pretrained source-domain model and unlabeled target-domain data. In this study, we built a source-free robust UDA approach with pseudo-label uncertainty estimation (SFRDA-PLUE) for diagnosing bearing faults using a limited number of samples. First, we designed a robust feature extractor (SANet) and proposed a novel binary soft-constrained information entropy. This was applied to solve the problem that standard information entropy cannot effectively estimate the uncertainty of pseudo-labels. In addition, we constructed a weighted comparison filter strategy to smoothen the fuzzy samples. Finally, we introduced an information-maximizing loss strategy to optimize the performance of the source domain classifier and the pseudo-label estimator. Thus, the robustness of the pseudo-label uncertainty estimation was significantly improved. The experimental results validated that the SFRDA-PLUE approach can achieve excellent diagnostic performance under a limited number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冯骏发布了新的文献求助10
2秒前
彭于晏应助QIULIN采纳,获得10
3秒前
鸡狗不如发布了新的文献求助10
3秒前
依风发布了新的文献求助10
3秒前
张张完成签到,获得积分10
4秒前
5秒前
尊敬的语薇完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
9秒前
11秒前
ding应助南瓜气气采纳,获得10
11秒前
12秒前
12秒前
红莲墨生发布了新的文献求助10
13秒前
卷卷发布了新的文献求助10
13秒前
诚心的大炮完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
15秒前
hehe发布了新的文献求助10
16秒前
cerium1925发布了新的文献求助10
16秒前
17秒前
喜洋洋完成签到 ,获得积分10
17秒前
kouke80发布了新的文献求助10
17秒前
逐影发布了新的文献求助10
19秒前
19秒前
mate发布了新的文献求助30
19秒前
甜甜的莞发布了新的文献求助10
19秒前
20秒前
20秒前
GPTea给hu的求助进行了留言
21秒前
懒大王发布了新的文献求助10
22秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908298
求助须知:如何正确求助?哪些是违规求助? 4184940
关于积分的说明 12996288
捐赠科研通 3951683
什么是DOI,文献DOI怎么找? 2167128
邀请新用户注册赠送积分活动 1185582
关于科研通互助平台的介绍 1092175