A source free robust domain adaptation approach with pseudo-labels uncertainty estimation for rolling bearing fault diagnosis under limited sample conditions

域适应 方位(导航) 断层(地质) 适应(眼睛) 样品(材料) 估计 领域(数学分析) 计算机科学 模式识别(心理学) 可靠性工程 数据挖掘 人工智能 工程类 数学 地质学 地震学 心理学 系统工程 神经科学 化学 数学分析 分类器(UML) 色谱法
作者
Ruiqi Liu,Wengang Ma,Feipeng Kuang,Guo Jin,Ning Zhao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:304: 112443-112443
标识
DOI:10.1016/j.knosys.2024.112443
摘要

As essential components of machinery equipment, rolling bearings directly affect the safety of the machinery equipment. The timely diagnosis of bearing faults can effectively prevent equipment lapses. However, bearings are often inconsistently distributed. This has resulted in a significant decrease in their availability. Moreover, the performances of traditional models are poor when fault samples are scarce. The unsupervised domain adaptation (UDA) model based on the transfer learning theory can solve the above problems in static scenarios. However, source domain data are often not directly accessible for privacy protection. Therefore, achieving the robustness of UDA models is significantly challenging. Source-free UDA can achieve a positive transfer from the source domain to the target domain based only on a pretrained source-domain model and unlabeled target-domain data. In this study, we built a source-free robust UDA approach with pseudo-label uncertainty estimation (SFRDA-PLUE) for diagnosing bearing faults using a limited number of samples. First, we designed a robust feature extractor (SANet) and proposed a novel binary soft-constrained information entropy. This was applied to solve the problem that standard information entropy cannot effectively estimate the uncertainty of pseudo-labels. In addition, we constructed a weighted comparison filter strategy to smoothen the fuzzy samples. Finally, we introduced an information-maximizing loss strategy to optimize the performance of the source domain classifier and the pseudo-label estimator. Thus, the robustness of the pseudo-label uncertainty estimation was significantly improved. The experimental results validated that the SFRDA-PLUE approach can achieve excellent diagnostic performance under a limited number of samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助小千采纳,获得10
刚刚
mingjie发布了新的文献求助10
1秒前
2秒前
算了发布了新的文献求助30
4秒前
能干可兰发布了新的文献求助10
5秒前
D1504009654完成签到,获得积分10
7秒前
香蕉觅云应助holic采纳,获得10
7秒前
年轻的宛发布了新的文献求助10
7秒前
小马甲应助嘀嘀哒哒采纳,获得10
8秒前
MGL2000发布了新的文献求助10
8秒前
天天快乐应助悦悦采纳,获得10
10秒前
10秒前
11秒前
overThat发布了新的文献求助10
13秒前
赘婿应助12344采纳,获得10
14秒前
15秒前
粥粥完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
冷傲山灵发布了新的文献求助10
17秒前
17秒前
小笑驳回了wanci应助
19秒前
gayfall发布了新的文献求助10
21秒前
小龚小龚完成签到 ,获得积分10
21秒前
22秒前
丘比特应助呦呦君必发SCI采纳,获得10
22秒前
23秒前
23秒前
wanci应助吸铁石睡觉采纳,获得10
24秒前
26秒前
27秒前
ygr完成签到,获得积分10
28秒前
12344发布了新的文献求助10
28秒前
汪123发布了新的文献求助10
30秒前
31秒前
小蘑菇应助俭朴山兰采纳,获得10
31秒前
ASHES发布了新的文献求助10
31秒前
科目三应助风中的天菱采纳,获得10
33秒前
33秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084389
求助须知:如何正确求助?哪些是违规求助? 2737327
关于积分的说明 7544689
捐赠科研通 2386947
什么是DOI,文献DOI怎么找? 1265702
科研通“疑难数据库(出版商)”最低求助积分说明 613158
版权声明 598320