Cascaded Inner-Outer Clip Retformer for Ultrasound Video Object Segmentation

计算机视觉 计算机科学 人工智能 分割 图像分割 对象(语法) 放射科 医学
作者
Jialu Li,Lei Zhu,Zhaohu Xing,Baoliang Zhao,Ying Hu,Faqin Lv,Q. Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/jbhi.2024.3464732
摘要

Computer-aided ultrasound (US) imaging is an important prerequisite for early clinical diagnosis and treatment. Due to the harsh ultrasound (US) image quality and the blurry tumor area, recent memory-based video object segmentation models (VOS) achieve frame-level segmentation by performing intensive similarity matching among the past frames which could inevitably result in computational redundancy. Furthermore, the current attention mechanism utilized in recent models only allocates the same attention level among whole spatial-temporal memory features without making distinctions, which may result in accuracy degradation. In this paper, we first build a larger annotated benchmark dataset for breast lesion segmentation in ultrasound videos, then we propose a lightweight clip-level VOS framework for achieving higher segmentation accuracy while maintaining the speed. The Inner-Outer Clip Retformer is proposed to extract spatialtemporal tumor features in parallel. Specifically, the proposed Outer Clip Retformer extracts the tumor movement feature from past video clips to locate the current clip tumor position, while the Inner Clip Retformer detailedly extracts current tumor features that can produce more accurate segmentation results. Then a Clip Contrastive loss function is further proposed to align the extracted tumor features along both the spatial-temporal dimensions to improve the segmentation accuracy. In addition, the Global Retentive Memory is proposed to maintain the complementary tumor features with lower computing resources which can generate coherent temporal movement features. In this way, our model can significantly improve the spatial-temporal perception ability without increasing a large number of parameters, achieving more accurate segmentation results while maintaining a faster segmentation speed. Finally, we conduct extensive experiments to evaluate our proposed model on several video object segmentation datasets, the results show that our framework outperforms state-of-theart segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助汪汪采纳,获得10
1秒前
5秒前
5秒前
不安的朋友完成签到 ,获得积分10
8秒前
8秒前
雪.发布了新的文献求助10
10秒前
祁九发布了新的文献求助10
10秒前
阳光下的味道完成签到,获得积分10
10秒前
10秒前
11秒前
小智0921完成签到,获得积分10
12秒前
没烦恼完成签到,获得积分10
14秒前
yang发布了新的文献求助10
14秒前
15秒前
这么年轻压根睡不着完成签到 ,获得积分10
15秒前
大模型应助优秀不愁采纳,获得10
16秒前
17秒前
安详三问发布了新的文献求助10
17秒前
FashionBoy应助冷静的寒荷采纳,获得10
18秒前
21秒前
21秒前
冰棒比冰冰完成签到 ,获得积分10
23秒前
Santasy发布了新的文献求助10
23秒前
1234完成签到,获得积分20
24秒前
liuz53发布了新的文献求助10
24秒前
Gaga发布了新的文献求助10
24秒前
avenue完成签到,获得积分10
25秒前
很厉害的黄桃完成签到 ,获得积分10
26秒前
汤姆完成签到 ,获得积分10
27秒前
29秒前
文献完成签到 ,获得积分10
32秒前
Gaga完成签到,获得积分10
34秒前
漂亮翅膀发布了新的文献求助10
34秒前
小七发布了新的文献求助10
34秒前
可乐关注了科研通微信公众号
34秒前
LZJ完成签到 ,获得积分10
34秒前
35秒前
小糖豆发布了新的文献求助10
35秒前
rortis应助负责的方盒采纳,获得10
40秒前
zc完成签到,获得积分10
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309867
求助须知:如何正确求助?哪些是违规求助? 2943043
关于积分的说明 8512407
捐赠科研通 2618126
什么是DOI,文献DOI怎么找? 1430834
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490