Formation and strengthening mechanism of ordered interstitial complexes in multi-principle element alloys

材料科学 机制(生物学) 要素(刑法) 冶金 法学 政治学 认识论 哲学
作者
Xiaoye Zhou,Hong‐Hui Wu,Yuan Wu,Xiong-Jun Liu,Xiangyang Peng,Shuo Hou,Zhaoping Lü
出处
期刊:Acta Materialia [Elsevier]
卷期号:: 120364-120364
标识
DOI:10.1016/j.actamat.2024.120364
摘要

Ordered interstitial complexes (OIC) are in the intermediate state between random interstitial solutes and chemical compounds, which can effectively improve the mechanical performance of multi-principle element alloys. Nevertheless, experimentally observing the complex atomic details of OIC formation and their interaction with dislocations remains challenging. Meanwhile, the simulations of the OIC behavior faced the dilemma of lacking interatomic potentials for multi-component systems. In this work, we investigate the oxygen OICs in TiNbZr medium entropy alloys as a typical example to elucidate the strengthening and toughening mechanisms of OICs with a developed highly accurate deep learning potential. The formation mechanism, atomic packing of OICs and their interaction with dislocations, were then elucidated by molecular dynamics simulations with the developed potential. The interstitial atoms were found to aggregate energetically and increase the barrier of dislocation movement upon loading. It was found that the Nb content has a significant impact on the morphology and distribution of OICs. The decrease of Nb content favors the formation of larger cluster-like OICs. The existence of OICs can remarkably enhance the critical shear stress required for continuous dislocation movement. A pinning-cutting behavior was found when an edge dislocation encounters an OIC while a cross-slip behavior occurred when a screw dislocation encounters an OIC. The developed interatomic potential provides a valuable tool for elucidating the deformation mechanisms of TiNbZrO alloys and highlights the significant effects of OICs on the mechanical performance of multi-principle element alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Leo采纳,获得10
1秒前
18756828852发布了新的文献求助10
2秒前
小田发布了新的文献求助10
2秒前
2秒前
2秒前
美丽凡阳关注了科研通微信公众号
5秒前
愉快的戎完成签到,获得积分10
6秒前
Levi完成签到,获得积分10
6秒前
善学以致用应助DIY101采纳,获得10
6秒前
懵懂的明辉完成签到,获得积分10
7秒前
zmz发布了新的文献求助10
7秒前
xixi发布了新的文献求助10
8秒前
DH完成签到 ,获得积分10
8秒前
8秒前
10秒前
英俊的铭应助嘻嘻采纳,获得10
10秒前
123abc完成签到,获得积分20
10秒前
浅陌初心发布了新的文献求助10
11秒前
忧伤的井发布了新的文献求助20
11秒前
11秒前
leeleetyo关注了科研通微信公众号
12秒前
Owen应助18756828852采纳,获得10
12秒前
白冰蓝发布了新的文献求助200
12秒前
cc发布了新的文献求助10
13秒前
treeshrew完成签到,获得积分10
13秒前
13秒前
13秒前
NexusExplorer应助GQ采纳,获得10
14秒前
14秒前
TTD完成签到,获得积分10
14秒前
15秒前
16秒前
ET发布了新的文献求助10
16秒前
16秒前
thth发布了新的文献求助10
17秒前
阔达如松发布了新的文献求助10
17秒前
情怀应助lqt采纳,获得30
17秒前
18秒前
just完成签到,获得积分10
19秒前
万能图书馆应助鲨鱼辣椒采纳,获得10
19秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1500
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 550
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
Sport, Music, Identities 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2987184
求助须知:如何正确求助?哪些是违规求助? 2648269
关于积分的说明 7154357
捐赠科研通 2282057
什么是DOI,文献DOI怎么找? 1210168
版权声明 592429
科研通“疑难数据库(出版商)”最低求助积分说明 591004