Physics-Informed Machine Learning for Calibrating Macroscopic Traffic Flow Models

流量(计算机网络) 流量(数学) 物理 校准 计算机科学 统计物理学 运输工程 运筹学 模拟 工程类 机械 计算机安全 量子力学
作者
Yu Tang,Li Jin,Kaan Özbay
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/trsc.2024.0526
摘要

Well-calibrated traffic flow models are fundamental to understanding traffic phenomena and designing control strategies. Traditional calibration has been developed based on optimization methods. In this paper, we propose a novel physics-informed, learning-based calibration approach that achieves performances comparable to and even better than those of optimization-based methods. To this end, we combine the classical deep autoencoder, an unsupervised machine learning model consisting of one encoder and one decoder, with traffic flow models. Our approach informs the decoder of the physical traffic flow models and thus induces the encoder to yield reasonable traffic parameters given flow and speed measurements. We also introduce the denoising autoencoder into our method so that it can handle not only with normal data but also corrupted data with missing values. We verified our approach with a case study of Interstate 210 Eastbound in California. It turns out that our approach can achieve comparable performance to the-state-of-the-art calibration methods given normal data and outperform them given corrupted data with missing values. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT25 Conference. Funding: This study was supported by the National Science Foundation [Grant CMMI-1949710] and the C2SMART Research Center, a Tier 1 University Transportation Center.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的伯云发布了新的文献求助100
刚刚
1秒前
无花果应助hhhhhh采纳,获得10
1秒前
乐乐应助王叮叮采纳,获得10
1秒前
今夜有雨完成签到 ,获得积分10
3秒前
3秒前
Fa完成签到,获得积分10
4秒前
6秒前
6秒前
嘀嘀嘀发布了新的文献求助10
6秒前
6秒前
Charety发布了新的文献求助10
7秒前
7秒前
彭院士发布了新的文献求助20
9秒前
善学以致用应助嘀嘀嘀采纳,获得10
9秒前
有有发布了新的文献求助10
10秒前
DDd发布了新的文献求助20
10秒前
numagok完成签到,获得积分10
11秒前
cmq完成签到 ,获得积分10
11秒前
Cassie发布了新的文献求助10
12秒前
Hello应助阿童木采纳,获得10
14秒前
cc完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
情怀应助塵埃采纳,获得10
16秒前
zzz完成签到,获得积分20
17秒前
tanXX发布了新的文献求助10
18秒前
FAN发布了新的文献求助30
18秒前
19秒前
21秒前
22秒前
Jaden完成签到,获得积分10
22秒前
笛卡尔完成签到,获得积分10
23秒前
24秒前
24秒前
ikkk完成签到,获得积分20
25秒前
25秒前
Winfred发布了新的文献求助10
26秒前
小南发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959547
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126213
捐赠科研通 3237706
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871647
科研通“疑难数据库(出版商)”最低求助积分说明 802931