Review of rolling bearings performance degradation trend prediction

降级(电信) 环境科学 工程类 法律工程学 计算机科学 电信
作者
Yaping Wang,Kaiting Lu,Renquan Dong,Yuqi Fan,Xudong Jiang
出处
期刊:Noise & Vibration Worldwide [SAGE Publishing]
标识
DOI:10.1177/09574565241282690
摘要

Rolling bearings are widely used in rotating machinery in modern industry, and ensuring their stability during operation is one of the prerequisites for the overall safety of the equipment. Predicting performance degradation can play a key role in preventing accidents and extending equipment life. With the development of big data and deep learning, more trend prediction methods are emerging in the field of performance degradation prediction of rolling bearings. Therefore, this paper reviews the evaluation indicators and performance degradation prediction models for rolling bearing performance degradation prediction. The advantages and disadvantages of physical degradation indicators, and virtual degradation indicators are analyzed. It is presented to utilize the powerful feature self-extraction ability and nonlinear function characterization ability of deep learning methods to construct bearing evaluation indicators. It also analyzes the research progress of traditional performance degradation prediction models and deep learning prediction models. In this review, future developments in rolling bearing performance degradation prediction are summarized in this paper as deep learning-based, digital twin correlation, high dimensionality, and adaptive, which guide researchers and practitioners to effectively identify suitable performance degradation prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助anyilin采纳,获得10
刚刚
旋光异构发布了新的文献求助10
1秒前
2秒前
2秒前
idannn完成签到,获得积分20
3秒前
怕孤单的听寒完成签到,获得积分10
4秒前
4秒前
6秒前
lu完成签到,获得积分10
7秒前
田様应助12334采纳,获得10
8秒前
H0123发布了新的文献求助10
8秒前
8秒前
budingman发布了新的文献求助20
8秒前
星辰大海应助神奇宝贝采纳,获得10
9秒前
guochang完成签到,获得积分20
9秒前
10秒前
123发布了新的文献求助10
11秒前
结实大白完成签到,获得积分10
11秒前
12秒前
打打应助alvin采纳,获得10
13秒前
13秒前
Dale完成签到,获得积分10
13秒前
儒雅的悟空完成签到,获得积分10
14秒前
14秒前
15秒前
H0123完成签到,获得积分10
15秒前
Amanda发布了新的文献求助10
15秒前
16秒前
17秒前
Christina发布了新的文献求助10
18秒前
18秒前
老陈发布了新的文献求助10
18秒前
12334发布了新的文献求助10
19秒前
anyilin发布了新的文献求助10
20秒前
dongdongqiang发布了新的文献求助50
20秒前
123完成签到,获得积分10
20秒前
21秒前
hyd1640完成签到,获得积分10
22秒前
Leslie关注了科研通微信公众号
22秒前
Lucas应助婧婧采纳,获得10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396