Advancing Lubrication Calculation: A Physics-Informed Neural Network Framework for Transient Effects and Cavitation Phenomena in Reciprocating Seals

空化 润滑 人工神经网络 雷诺方程 领域(数学) 摩擦学 瞬态(计算机编程) 机械工程 过程(计算) 往复运动 计算机科学 控制工程 人工智能 机械 雷诺数 工程类 物理 数学 湍流 方位(导航) 纯数学 操作系统
作者
Faras Brumand‐Poor,Florian Barlog,Nils Plueckhahn,Matteo Thebelt,Katharina Schmitz
标识
DOI:10.61319/j7i2hnkr
摘要

"In numerous technical applications, gaining insights into the behavior of tribological systems is crucial for optimizing efficiency and prolonging operational lifespans. Experimental investigations of such systems require considerable costs and time investments, particularly in the field of sealing, notably reciprocating seals for fluid power systems. A more feasible method is the application of elastohydrodynamic lubrication (EHL) simulation models, such as the dynamic description of sealings (DDS) model, which compute friction of seals by the hydrodynamics within the sealing contact according to the Reynolds equation, the seal’s deformation, and the contact mechanics. The main drawback of these distributed parameter simulations is the necessity of a time-intensive resolution process. Given these experimental and computational constraints, machine learning algorithms offer a promising solution. Physics-informed machine learning (PIML) represents a noteworthy advancement in machine learning in tribology, extending traditional models with physics-based rules and enhancing accuracy in determining phenomena such as friction, wear, and lubrication. Within this field, physics-informed neural networks (PINN) emerge as a powerful class of hybrid solvers, combining data-driven and physics-based approaches to solve partial differential equations, the governing equations in EHL simulations. By integrating physical principles into the neural network’s parameter optimization, PINNs provide an accurate and accelerated solution. In this contribution, a PINN framework is applied to predict pressure build-up and cavitation in sealing contacts with housing. The capability of PINNs to determine transient and cavitation effects is thoroughly investigated and validated by the solution of the Reynolds equation obtained by the DDS. The results demonstrate the potential of PINNs for modeling tribological systems and highlight their significance in enhancing computational efficiency."

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wujiasheng完成签到,获得积分10
1秒前
小狗发布了新的文献求助10
1秒前
2秒前
Raymond应助白猫采纳,获得10
2秒前
奋斗小鸽子完成签到,获得积分20
3秒前
wwj恒恒完成签到,获得积分10
3秒前
nihao完成签到,获得积分10
4秒前
懵懂的安梦关注了科研通微信公众号
4秒前
4秒前
5秒前
你好CDY完成签到,获得积分10
5秒前
6秒前
多喝开开发布了新的文献求助10
7秒前
CGAT发布了新的文献求助10
7秒前
ptjam完成签到,获得积分10
7秒前
7秒前
帅气的高跟鞋完成签到,获得积分10
8秒前
8秒前
9秒前
Orange应助Oblivion采纳,获得10
10秒前
彭于晏应助kydd采纳,获得10
10秒前
liaomr发布了新的文献求助10
10秒前
10秒前
Jasper应助xiang采纳,获得10
10秒前
小蘑菇应助龙潜胜采纳,获得10
11秒前
11秒前
ste完成签到,获得积分10
12秒前
共享精神应助光亮友安采纳,获得10
12秒前
静途发布了新的文献求助10
12秒前
曲初雪完成签到,获得积分10
13秒前
啦啦啦完成签到,获得积分10
13秒前
陶醉的寄云完成签到,获得积分20
13秒前
是晴天啊完成签到,获得积分10
14秒前
14秒前
11发布了新的文献求助50
14秒前
大饼完成签到,获得积分10
15秒前
KK完成签到,获得积分20
15秒前
ste发布了新的文献求助20
15秒前
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303998
求助须知:如何正确求助?哪些是违规求助? 2938076
关于积分的说明 8486509
捐赠科研通 2612165
什么是DOI,文献DOI怎么找? 1426512
科研通“疑难数据库(出版商)”最低求助积分说明 662691
邀请新用户注册赠送积分活动 647276