亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancing Lubrication Calculation: A Physics-Informed Neural Network Framework for Transient Effects and Cavitation Phenomena in Reciprocating Seals

空化 润滑 人工神经网络 雷诺方程 领域(数学) 摩擦学 瞬态(计算机编程) 机械工程 过程(计算) 往复运动 计算机科学 控制工程 人工智能 机械 雷诺数 工程类 物理 数学 湍流 方位(导航) 纯数学 操作系统
作者
Faras Brumand‐Poor,Florian Barlog,Nils Plueckhahn,Matteo Thebelt,Katharina Schmitz
标识
DOI:10.61319/j7i2hnkr
摘要

"In numerous technical applications, gaining insights into the behavior of tribological systems is crucial for optimizing efficiency and prolonging operational lifespans. Experimental investigations of such systems require considerable costs and time investments, particularly in the field of sealing, notably reciprocating seals for fluid power systems. A more feasible method is the application of elastohydrodynamic lubrication (EHL) simulation models, such as the dynamic description of sealings (DDS) model, which compute friction of seals by the hydrodynamics within the sealing contact according to the Reynolds equation, the seal’s deformation, and the contact mechanics. The main drawback of these distributed parameter simulations is the necessity of a time-intensive resolution process. Given these experimental and computational constraints, machine learning algorithms offer a promising solution. Physics-informed machine learning (PIML) represents a noteworthy advancement in machine learning in tribology, extending traditional models with physics-based rules and enhancing accuracy in determining phenomena such as friction, wear, and lubrication. Within this field, physics-informed neural networks (PINN) emerge as a powerful class of hybrid solvers, combining data-driven and physics-based approaches to solve partial differential equations, the governing equations in EHL simulations. By integrating physical principles into the neural network’s parameter optimization, PINNs provide an accurate and accelerated solution. In this contribution, a PINN framework is applied to predict pressure build-up and cavitation in sealing contacts with housing. The capability of PINNs to determine transient and cavitation effects is thoroughly investigated and validated by the solution of the Reynolds equation obtained by the DDS. The results demonstrate the potential of PINNs for modeling tribological systems and highlight their significance in enhancing computational efficiency."

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
rjtmu发布了新的文献求助10
8秒前
搞怪腊肠完成签到,获得积分10
16秒前
18秒前
orixero应助rjtmu采纳,获得10
20秒前
搞怪腊肠发布了新的文献求助10
26秒前
27秒前
傲娇的笑白完成签到 ,获得积分10
28秒前
DrW1111发布了新的文献求助10
30秒前
rengar完成签到,获得积分10
30秒前
贱小贱完成签到,获得积分10
33秒前
Qvby3完成签到 ,获得积分10
33秒前
36秒前
西格玛发布了新的文献求助30
40秒前
朴素的不乐完成签到 ,获得积分10
40秒前
可久斯基完成签到 ,获得积分10
42秒前
脑洞疼应助DrW1111采纳,获得10
42秒前
lele完成签到,获得积分10
46秒前
ccc完成签到 ,获得积分10
46秒前
dew驳回了丘比特应助
49秒前
dax大雄完成签到 ,获得积分10
50秒前
wuxidixi发布了新的文献求助10
54秒前
万能图书馆应助搞怪腊肠采纳,获得10
57秒前
58秒前
bkagyin应助科研通管家采纳,获得30
58秒前
Zirong发布了新的文献求助10
1分钟前
1分钟前
BakerStreet发布了新的文献求助10
1分钟前
淡定从霜完成签到 ,获得积分10
1分钟前
BakerStreet完成签到,获得积分10
1分钟前
奶茶发布了新的文献求助10
1分钟前
磊少完成签到 ,获得积分10
1分钟前
万能图书馆应助小中医采纳,获得10
1分钟前
务实书包完成签到,获得积分10
1分钟前
细心薯片完成签到 ,获得积分10
1分钟前
1分钟前
雷锋完成签到,获得积分10
1分钟前
LIU完成签到 ,获得积分10
1分钟前
乐乐应助袁咏琳冲冲冲采纳,获得10
1分钟前
Shyee完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965570
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155342
捐赠科研通 3245324
什么是DOI,文献DOI怎么找? 1792823
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176