Advancing Lubrication Calculation: A Physics-Informed Neural Network Framework for Transient Effects and Cavitation Phenomena in Reciprocating Seals

空化 润滑 人工神经网络 雷诺方程 领域(数学) 摩擦学 瞬态(计算机编程) 机械工程 过程(计算) 往复运动 计算机科学 控制工程 人工智能 机械 雷诺数 工程类 物理 数学 湍流 方位(导航) 纯数学 操作系统
作者
Faras Brumand‐Poor,Florian Barlog,Nils Plueckhahn,Matteo Thebelt,Katharina Schmitz
标识
DOI:10.61319/j7i2hnkr
摘要

"In numerous technical applications, gaining insights into the behavior of tribological systems is crucial for optimizing efficiency and prolonging operational lifespans. Experimental investigations of such systems require considerable costs and time investments, particularly in the field of sealing, notably reciprocating seals for fluid power systems. A more feasible method is the application of elastohydrodynamic lubrication (EHL) simulation models, such as the dynamic description of sealings (DDS) model, which compute friction of seals by the hydrodynamics within the sealing contact according to the Reynolds equation, the seal’s deformation, and the contact mechanics. The main drawback of these distributed parameter simulations is the necessity of a time-intensive resolution process. Given these experimental and computational constraints, machine learning algorithms offer a promising solution. Physics-informed machine learning (PIML) represents a noteworthy advancement in machine learning in tribology, extending traditional models with physics-based rules and enhancing accuracy in determining phenomena such as friction, wear, and lubrication. Within this field, physics-informed neural networks (PINN) emerge as a powerful class of hybrid solvers, combining data-driven and physics-based approaches to solve partial differential equations, the governing equations in EHL simulations. By integrating physical principles into the neural network’s parameter optimization, PINNs provide an accurate and accelerated solution. In this contribution, a PINN framework is applied to predict pressure build-up and cavitation in sealing contacts with housing. The capability of PINNs to determine transient and cavitation effects is thoroughly investigated and validated by the solution of the Reynolds equation obtained by the DDS. The results demonstrate the potential of PINNs for modeling tribological systems and highlight their significance in enhancing computational efficiency."

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦乐巧完成签到,获得积分20
刚刚
Christine完成签到,获得积分10
2秒前
铁匠发布了新的文献求助10
2秒前
2秒前
Criminology34应助小芊采纳,获得10
4秒前
糕糕完成签到,获得积分10
4秒前
hbhbj发布了新的文献求助10
5秒前
6秒前
8秒前
yunyun55aa完成签到,获得积分10
8秒前
dimples完成签到 ,获得积分10
8秒前
asahi完成签到,获得积分10
9秒前
Gabriel发布了新的文献求助10
10秒前
orixero应助leilani采纳,获得30
10秒前
10秒前
11秒前
栀栀云安发布了新的文献求助10
12秒前
hbhbj发布了新的文献求助10
12秒前
深情安青应助dyzh977采纳,获得10
13秒前
蜉蝣完成签到 ,获得积分20
14秒前
14秒前
酷酷的山雁完成签到,获得积分10
16秒前
水凝胶完成签到,获得积分10
16秒前
花花完成签到 ,获得积分10
17秒前
samal完成签到 ,获得积分10
18秒前
hbhbj发布了新的文献求助10
19秒前
19秒前
蜉蝣关注了科研通微信公众号
20秒前
3xxxNnn完成签到,获得积分10
20秒前
难过的谷芹应助yunyun55aa采纳,获得10
21秒前
FashionBoy应助tleeny采纳,获得10
22秒前
罗莹洁完成签到,获得积分10
23秒前
23秒前
hbhbj发布了新的文献求助10
25秒前
机灵的大白菜完成签到 ,获得积分10
26秒前
fenmiao发布了新的文献求助10
26秒前
米麻薯关注了科研通微信公众号
27秒前
桐桐应助ZJF采纳,获得20
27秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305985
求助须知:如何正确求助?哪些是违规求助? 4451844
关于积分的说明 13853249
捐赠科研通 4339378
什么是DOI,文献DOI怎么找? 2382507
邀请新用户注册赠送积分活动 1377530
关于科研通互助平台的介绍 1345146