Advancing Lubrication Calculation: A Physics-Informed Neural Network Framework for Transient Effects and Cavitation Phenomena in Reciprocating Seals

空化 润滑 人工神经网络 雷诺方程 领域(数学) 摩擦学 瞬态(计算机编程) 机械工程 过程(计算) 往复运动 计算机科学 控制工程 人工智能 机械 雷诺数 工程类 物理 数学 湍流 方位(导航) 纯数学 操作系统
作者
Faras Brumand‐Poor,Florian Barlog,Nils Plueckhahn,Matteo Thebelt,Katharina Schmitz
标识
DOI:10.61319/j7i2hnkr
摘要

"In numerous technical applications, gaining insights into the behavior of tribological systems is crucial for optimizing efficiency and prolonging operational lifespans. Experimental investigations of such systems require considerable costs and time investments, particularly in the field of sealing, notably reciprocating seals for fluid power systems. A more feasible method is the application of elastohydrodynamic lubrication (EHL) simulation models, such as the dynamic description of sealings (DDS) model, which compute friction of seals by the hydrodynamics within the sealing contact according to the Reynolds equation, the seal’s deformation, and the contact mechanics. The main drawback of these distributed parameter simulations is the necessity of a time-intensive resolution process. Given these experimental and computational constraints, machine learning algorithms offer a promising solution. Physics-informed machine learning (PIML) represents a noteworthy advancement in machine learning in tribology, extending traditional models with physics-based rules and enhancing accuracy in determining phenomena such as friction, wear, and lubrication. Within this field, physics-informed neural networks (PINN) emerge as a powerful class of hybrid solvers, combining data-driven and physics-based approaches to solve partial differential equations, the governing equations in EHL simulations. By integrating physical principles into the neural network’s parameter optimization, PINNs provide an accurate and accelerated solution. In this contribution, a PINN framework is applied to predict pressure build-up and cavitation in sealing contacts with housing. The capability of PINNs to determine transient and cavitation effects is thoroughly investigated and validated by the solution of the Reynolds equation obtained by the DDS. The results demonstrate the potential of PINNs for modeling tribological systems and highlight their significance in enhancing computational efficiency."

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过眼云烟发布了新的文献求助10
1秒前
上官若男应助清脆天空采纳,获得10
3秒前
yiyi037118发布了新的文献求助10
5秒前
香蕉觅云应助丂枧采纳,获得10
5秒前
5秒前
Jes完成签到 ,获得积分20
7秒前
Ddz完成签到,获得积分10
7秒前
9秒前
6aff发布了新的文献求助10
9秒前
正月初九完成签到,获得积分10
9秒前
12秒前
Ql1987完成签到,获得积分10
12秒前
852应助咿呀咿呀采纳,获得10
12秒前
研友_89mzm8完成签到,获得积分20
12秒前
yiyi037118完成签到,获得积分10
13秒前
清鱼坊完成签到,获得积分10
13秒前
zheng-homes发布了新的文献求助10
15秒前
清脆天空发布了新的文献求助10
15秒前
淡淡向日葵完成签到 ,获得积分10
16秒前
遇上就这样吧应助4kkself采纳,获得10
16秒前
哈基米完成签到,获得积分0
16秒前
施储完成签到,获得积分10
17秒前
17秒前
恩吉尔完成签到,获得积分10
18秒前
18秒前
zheng-homes完成签到,获得积分10
20秒前
21秒前
cc与车夫完成签到,获得积分20
22秒前
饿哭了塞完成签到 ,获得积分10
23秒前
Lion发布了新的文献求助30
23秒前
咿呀咿呀发布了新的文献求助10
24秒前
24秒前
25秒前
小杭76应助欢喜的不尤采纳,获得10
26秒前
26秒前
27秒前
耳机单蹦应助无妄采纳,获得10
27秒前
照亮世界的ay完成签到,获得积分10
28秒前
Lion完成签到,获得积分20
30秒前
30秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379690
求助须知:如何正确求助?哪些是违规求助? 4503940
关于积分的说明 14017109
捐赠科研通 4412782
什么是DOI,文献DOI怎么找? 2423932
邀请新用户注册赠送积分活动 1416842
关于科研通互助平台的介绍 1394431