Advancing Lubrication Calculation: A Physics-Informed Neural Network Framework for Transient Effects and Cavitation Phenomena in Reciprocating Seals

空化 润滑 人工神经网络 雷诺方程 领域(数学) 摩擦学 瞬态(计算机编程) 机械工程 过程(计算) 往复运动 计算机科学 控制工程 人工智能 机械 雷诺数 工程类 物理 数学 湍流 方位(导航) 纯数学 操作系统
作者
Faras Brumand‐Poor,Florian Barlog,Nils Plueckhahn,Matteo Thebelt,Katharina Schmitz
标识
DOI:10.61319/j7i2hnkr
摘要

"In numerous technical applications, gaining insights into the behavior of tribological systems is crucial for optimizing efficiency and prolonging operational lifespans. Experimental investigations of such systems require considerable costs and time investments, particularly in the field of sealing, notably reciprocating seals for fluid power systems. A more feasible method is the application of elastohydrodynamic lubrication (EHL) simulation models, such as the dynamic description of sealings (DDS) model, which compute friction of seals by the hydrodynamics within the sealing contact according to the Reynolds equation, the seal’s deformation, and the contact mechanics. The main drawback of these distributed parameter simulations is the necessity of a time-intensive resolution process. Given these experimental and computational constraints, machine learning algorithms offer a promising solution. Physics-informed machine learning (PIML) represents a noteworthy advancement in machine learning in tribology, extending traditional models with physics-based rules and enhancing accuracy in determining phenomena such as friction, wear, and lubrication. Within this field, physics-informed neural networks (PINN) emerge as a powerful class of hybrid solvers, combining data-driven and physics-based approaches to solve partial differential equations, the governing equations in EHL simulations. By integrating physical principles into the neural network’s parameter optimization, PINNs provide an accurate and accelerated solution. In this contribution, a PINN framework is applied to predict pressure build-up and cavitation in sealing contacts with housing. The capability of PINNs to determine transient and cavitation effects is thoroughly investigated and validated by the solution of the Reynolds equation obtained by the DDS. The results demonstrate the potential of PINNs for modeling tribological systems and highlight their significance in enhancing computational efficiency."

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzqx完成签到,获得积分10
2秒前
起司嗯完成签到,获得积分10
2秒前
开放鸵鸟完成签到,获得积分10
2秒前
徐徐发布了新的文献求助10
2秒前
ZZZ发布了新的文献求助10
3秒前
懵懂的子骞完成签到 ,获得积分10
4秒前
mammoth发布了新的文献求助40
4秒前
4秒前
英俊的铭应助Chang采纳,获得10
5秒前
5秒前
5秒前
kk子完成签到,获得积分10
6秒前
夏橪发布了新的文献求助10
6秒前
JamesPei应助lunan采纳,获得10
7秒前
传奇3应助qing采纳,获得10
7秒前
卫尔摩斯完成签到,获得积分10
8秒前
8秒前
8秒前
沉默牛排发布了新的文献求助10
8秒前
科研通AI5应助独特微笑采纳,获得10
8秒前
9秒前
9秒前
碧玉墨绿完成签到,获得积分10
9秒前
xiaoma完成签到,获得积分10
9秒前
10秒前
潇洒的擎苍完成签到,获得积分10
10秒前
刘晓纳发布了新的文献求助10
10秒前
晴子发布了新的文献求助10
10秒前
洛鸢发布了新的文献求助10
11秒前
立马毕业完成签到,获得积分10
11秒前
卫尔摩斯发布了新的文献求助10
11秒前
BINBIN完成签到 ,获得积分10
11秒前
hfgeyt完成签到,获得积分10
12秒前
sakurai应助背后的诺言采纳,获得10
12秒前
湘华发布了新的文献求助10
13秒前
Jenny应助lan采纳,获得10
13秒前
单薄的飞松完成签到 ,获得积分10
13秒前
醒醒发布了新的文献求助10
13秒前
14秒前
恨安完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762