Advancing Lubrication Calculation: A Physics-Informed Neural Network Framework for Transient Effects and Cavitation Phenomena in Reciprocating Seals

空化 润滑 人工神经网络 雷诺方程 领域(数学) 摩擦学 瞬态(计算机编程) 机械工程 过程(计算) 往复运动 计算机科学 控制工程 人工智能 机械 雷诺数 工程类 物理 数学 操作系统 湍流 方位(导航) 纯数学
作者
Faras Brumand‐Poor,Florian Barlog,Nils Plueckhahn,Matteo Thebelt,Katharina Schmitz
标识
DOI:10.61319/j7i2hnkr
摘要

"In numerous technical applications, gaining insights into the behavior of tribological systems is crucial for optimizing efficiency and prolonging operational lifespans. Experimental investigations of such systems require considerable costs and time investments, particularly in the field of sealing, notably reciprocating seals for fluid power systems. A more feasible method is the application of elastohydrodynamic lubrication (EHL) simulation models, such as the dynamic description of sealings (DDS) model, which compute friction of seals by the hydrodynamics within the sealing contact according to the Reynolds equation, the seal’s deformation, and the contact mechanics. The main drawback of these distributed parameter simulations is the necessity of a time-intensive resolution process. Given these experimental and computational constraints, machine learning algorithms offer a promising solution. Physics-informed machine learning (PIML) represents a noteworthy advancement in machine learning in tribology, extending traditional models with physics-based rules and enhancing accuracy in determining phenomena such as friction, wear, and lubrication. Within this field, physics-informed neural networks (PINN) emerge as a powerful class of hybrid solvers, combining data-driven and physics-based approaches to solve partial differential equations, the governing equations in EHL simulations. By integrating physical principles into the neural network’s parameter optimization, PINNs provide an accurate and accelerated solution. In this contribution, a PINN framework is applied to predict pressure build-up and cavitation in sealing contacts with housing. The capability of PINNs to determine transient and cavitation effects is thoroughly investigated and validated by the solution of the Reynolds equation obtained by the DDS. The results demonstrate the potential of PINNs for modeling tribological systems and highlight their significance in enhancing computational efficiency."

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的钻石完成签到,获得积分10
刚刚
小枣发布了新的文献求助10
刚刚
Jj7完成签到,获得积分10
4秒前
菲菲发布了新的文献求助10
5秒前
7秒前
7秒前
8秒前
9秒前
碧蓝的老鼠完成签到,获得积分20
9秒前
9秒前
10秒前
科目三应助zp采纳,获得10
10秒前
刘鑫东完成签到,获得积分20
10秒前
super发布了新的文献求助30
11秒前
LLC发布了新的文献求助10
11秒前
传奇3应助文静达采纳,获得10
14秒前
JG完成签到 ,获得积分10
14秒前
三三四完成签到,获得积分10
15秒前
iwwwwwn发布了新的文献求助10
15秒前
zqq完成签到,获得积分10
15秒前
Giner发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
17秒前
tree完成签到,获得积分10
19秒前
adeno发布了新的文献求助10
21秒前
22秒前
zyq发布了新的文献求助10
23秒前
23秒前
zheer发布了新的文献求助30
23秒前
23秒前
CC完成签到 ,获得积分10
24秒前
彭于晏应助Natsume采纳,获得10
25秒前
彩色的芝麻完成签到 ,获得积分10
27秒前
27秒前
菲菲完成签到,获得积分20
27秒前
曹志毅发布了新的文献求助10
28秒前
qq完成签到,获得积分10
29秒前
Ail完成签到,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783