Advancing Lubrication Calculation: A Physics-Informed Neural Network Framework for Transient Effects and Cavitation Phenomena in Reciprocating Seals

空化 润滑 人工神经网络 雷诺方程 领域(数学) 摩擦学 瞬态(计算机编程) 机械工程 过程(计算) 往复运动 计算机科学 控制工程 人工智能 机械 雷诺数 工程类 物理 数学 操作系统 湍流 方位(导航) 纯数学
作者
Faras Brumand‐Poor,Florian Barlog,Nils Plueckhahn,Matteo Thebelt,Katharina Schmitz
标识
DOI:10.61319/j7i2hnkr
摘要

"In numerous technical applications, gaining insights into the behavior of tribological systems is crucial for optimizing efficiency and prolonging operational lifespans. Experimental investigations of such systems require considerable costs and time investments, particularly in the field of sealing, notably reciprocating seals for fluid power systems. A more feasible method is the application of elastohydrodynamic lubrication (EHL) simulation models, such as the dynamic description of sealings (DDS) model, which compute friction of seals by the hydrodynamics within the sealing contact according to the Reynolds equation, the seal’s deformation, and the contact mechanics. The main drawback of these distributed parameter simulations is the necessity of a time-intensive resolution process. Given these experimental and computational constraints, machine learning algorithms offer a promising solution. Physics-informed machine learning (PIML) represents a noteworthy advancement in machine learning in tribology, extending traditional models with physics-based rules and enhancing accuracy in determining phenomena such as friction, wear, and lubrication. Within this field, physics-informed neural networks (PINN) emerge as a powerful class of hybrid solvers, combining data-driven and physics-based approaches to solve partial differential equations, the governing equations in EHL simulations. By integrating physical principles into the neural network’s parameter optimization, PINNs provide an accurate and accelerated solution. In this contribution, a PINN framework is applied to predict pressure build-up and cavitation in sealing contacts with housing. The capability of PINNs to determine transient and cavitation effects is thoroughly investigated and validated by the solution of the Reynolds equation obtained by the DDS. The results demonstrate the potential of PINNs for modeling tribological systems and highlight their significance in enhancing computational efficiency."

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助重要的月亮采纳,获得10
刚刚
hhh完成签到,获得积分10
2秒前
BGa发布了新的文献求助10
3秒前
3秒前
3秒前
陈cc发布了新的文献求助10
3秒前
zsy发布了新的文献求助10
3秒前
4秒前
dong发布了新的文献求助10
5秒前
Majoe完成签到,获得积分10
5秒前
隐形曼青应助kkx采纳,获得10
5秒前
yyy完成签到,获得积分20
5秒前
pi完成签到 ,获得积分10
6秒前
超帅的豪英完成签到,获得积分10
6秒前
RZS发布了新的文献求助10
6秒前
dryao完成签到,获得积分10
6秒前
xiaojiu完成签到,获得积分10
7秒前
seon完成签到,获得积分10
7秒前
成帅哥给成帅哥的求助进行了留言
7秒前
7秒前
accept完成签到,获得积分10
8秒前
8秒前
8秒前
宅了五百奶奶完成签到,获得积分20
8秒前
huan发布了新的文献求助10
9秒前
9秒前
10秒前
务实的西牛完成签到,获得积分10
10秒前
Jasper应助懒大王采纳,获得10
10秒前
bb完成签到,获得积分20
12秒前
深情安青应助indigo采纳,获得10
12秒前
bkagyin应助李满际采纳,获得10
12秒前
yyyn应助写意采纳,获得10
12秒前
求文献完成签到,获得积分10
12秒前
大气丹萱发布了新的文献求助10
13秒前
早睡早起的安完成签到,获得积分10
13秒前
13秒前
落寞剑成完成签到 ,获得积分10
13秒前
13秒前
温乐松完成签到,获得积分10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758869
求助须知:如何正确求助?哪些是违规求助? 3301957
关于积分的说明 10120385
捐赠科研通 3016334
什么是DOI,文献DOI怎么找? 1656462
邀请新用户注册赠送积分活动 790431
科研通“疑难数据库(出版商)”最低求助积分说明 753871