Advancing Lubrication Calculation: A Physics-Informed Neural Network Framework for Transient Effects and Cavitation Phenomena in Reciprocating Seals

空化 润滑 人工神经网络 雷诺方程 领域(数学) 摩擦学 瞬态(计算机编程) 机械工程 过程(计算) 往复运动 计算机科学 控制工程 人工智能 机械 雷诺数 工程类 物理 数学 湍流 方位(导航) 纯数学 操作系统
作者
Faras Brumand‐Poor,Florian Barlog,Nils Plueckhahn,Matteo Thebelt,Katharina Schmitz
标识
DOI:10.61319/j7i2hnkr
摘要

"In numerous technical applications, gaining insights into the behavior of tribological systems is crucial for optimizing efficiency and prolonging operational lifespans. Experimental investigations of such systems require considerable costs and time investments, particularly in the field of sealing, notably reciprocating seals for fluid power systems. A more feasible method is the application of elastohydrodynamic lubrication (EHL) simulation models, such as the dynamic description of sealings (DDS) model, which compute friction of seals by the hydrodynamics within the sealing contact according to the Reynolds equation, the seal’s deformation, and the contact mechanics. The main drawback of these distributed parameter simulations is the necessity of a time-intensive resolution process. Given these experimental and computational constraints, machine learning algorithms offer a promising solution. Physics-informed machine learning (PIML) represents a noteworthy advancement in machine learning in tribology, extending traditional models with physics-based rules and enhancing accuracy in determining phenomena such as friction, wear, and lubrication. Within this field, physics-informed neural networks (PINN) emerge as a powerful class of hybrid solvers, combining data-driven and physics-based approaches to solve partial differential equations, the governing equations in EHL simulations. By integrating physical principles into the neural network’s parameter optimization, PINNs provide an accurate and accelerated solution. In this contribution, a PINN framework is applied to predict pressure build-up and cavitation in sealing contacts with housing. The capability of PINNs to determine transient and cavitation effects is thoroughly investigated and validated by the solution of the Reynolds equation obtained by the DDS. The results demonstrate the potential of PINNs for modeling tribological systems and highlight their significance in enhancing computational efficiency."

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清明完成签到,获得积分10
刚刚
车宇完成签到 ,获得积分10
刚刚
林北子关注了科研通微信公众号
1秒前
llllllb发布了新的文献求助10
2秒前
ccyrichard完成签到,获得积分10
2秒前
2秒前
mds发布了新的文献求助10
4秒前
CMD完成签到 ,获得积分10
4秒前
正版DY发布了新的文献求助10
4秒前
4秒前
Dank1ng完成签到,获得积分10
5秒前
小二郎应助安若采纳,获得10
5秒前
5秒前
彭于晏应助清明采纳,获得10
6秒前
YLL完成签到,获得积分10
6秒前
木梨子完成签到,获得积分10
7秒前
橙子发布了新的文献求助10
7秒前
7秒前
文艺的雨完成签到,获得积分10
8秒前
9秒前
huahua完成签到,获得积分10
9秒前
英俊的铭应助dry采纳,获得10
10秒前
小橘完成签到,获得积分10
11秒前
11秒前
琥1完成签到,获得积分10
11秒前
maguodrgon发布了新的文献求助10
12秒前
虚幻的亦旋完成签到,获得积分10
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Babytucky发布了新的文献求助10
15秒前
柴鱼完成签到,获得积分10
17秒前
零琳完成签到 ,获得积分20
18秒前
雪王完成签到,获得积分10
18秒前
19秒前
19秒前
NexusExplorer应助炫彩小陈采纳,获得10
19秒前
22秒前
顾矜应助mds采纳,获得10
24秒前
25秒前
kaier完成签到 ,获得积分0
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514