Forming mechanism of single-channel multilayer laser cladding Fe60 process under different laser heat source operating mode

材料科学 激光器 机制(生物学) 包层(金属加工) 模式(计算机接口) 过程(计算) 光电子学 光学 计算机科学 复合材料 物理 量子力学 操作系统
作者
Chang Li,Han Sun,Junjia Zhao,Xing Han
标识
DOI:10.1177/14644207241259832
摘要

Continuous wave (CW) and pulsed wave are the two principal modes of operation used to control the laser heat source. Different laser heat source operating modes have an essential impact on the rapid cooling and heating temperature change rate during the cladding process, which directly determines the cladding layer quality. The laser cladding process is meaningful to quantitatively reveal the mechanism of single-channel multilayer cladding and forming under different laser heat source operating modes. In this article, a multi-field coupled 3D numerical model of the single-channel multilayer cladding process under different laser operating modes was proposed, and the thermal physical parameters of the cladding material were computed on the basis of Calculation of Phase Diagrams method. The mechanism of the impact of distinct operating modes on the multi-field coupled ephemeral evolution process of laser cladding was investigated by using the solid/liquid interface tracking technique, which comprehensively considers the light powder interaction between the powder waist beam and the laser beam under different operating modes. The temperature, flow, and stress fields were computationally solved for a single-channel multilayer cladding process. On the foundation of this study, the impact mechanism of pulse duty cycle and pulse frequency on the cladding behavior of single-channel and multilayers during pulsed laser cladding were dissected. The macroscopic morphology and microstructure of the cladding layer were observed by KEYENCE VH-Z100R ultra-deep field electron microscope, and the feasibility of the model was confirmed. This study provides a significant theoretical rationale for enhancing the cladding quality under different laser operating modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
lilili应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得30
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
sasa发布了新的文献求助10
2秒前
BowieHuang应助likeit采纳,获得10
3秒前
斯文败类应助铁树采纳,获得10
3秒前
Murphy发布了新的文献求助10
4秒前
小蘑菇应助王文菁采纳,获得10
4秒前
整化学发布了新的文献求助10
4秒前
于呆呆完成签到,获得积分10
4秒前
Ricky小强完成签到,获得积分10
4秒前
Jade发布了新的文献求助10
4秒前
盛盛完成签到,获得积分10
4秒前
科研通AI6应助靓丽傲玉采纳,获得10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
wuhao完成签到,获得积分10
7秒前
沉静从阳完成签到,获得积分10
7秒前
冷风完成签到 ,获得积分10
8秒前
zlu发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049