Reconstruction of missing wind data based on limited wind pressure measurements and machine learning

物理 太阳风 气象学 航空航天工程 等离子体 核物理学 工程类
作者
Jeng-Min Huang,Q.S. Li,Xu‐Liang Han
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7)
标识
DOI:10.1063/5.0220410
摘要

In structural health monitoring (SHM), wind field monitoring sometimes suffers from data loss owing to monitoring device failure, which inevitably creates barriers to subsequent data analysis and data mining. To this end, a novel strategy for reconstructing missing wind field data based on machine learning (ML) utilizing limited wind pressure measurements is proposed in this paper. Several ML algorithms, including decision tree, random forest, gradient boosting regression tree, support vector regression, Gaussian process regression, and backpropagation neural network, are employed to characterize potential relationships between wind pressure information (including time series and statistical parameters of wind pressures) and wind field information (e.g., wind direction and wind speed). Moreover, the effect of input information (including the type of input variables as well as the number and location of pressure transducers providing input data) on reconstruction performance and efficiency is investigated. Field measured records from an SHM system in a 600-m-high supertall building during typhoons are utilized to validate the feasibility and robustness of the proposed strategy. The results show that the presented strategy can effectively reconstruct missing wind field information in the SHM of the skyscraper during typhoons. Compared with the time series of wind pressures, selecting statistical parameters of wind pressures as input variables can effectively improve the performance and efficiency of reconstruction models. Choosing appropriate input information (e.g., using multiple input variables, adopting data from a larger number of pressure transducers, and utilizing data from pressure transducers closer to an anemometer) is beneficial for enhancing the performance of reconstruction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助小小佳作采纳,获得10
刚刚
1秒前
Hello应助fee采纳,获得10
1秒前
1秒前
黄垚发布了新的文献求助10
1秒前
2秒前
2秒前
冷傲的荧荧完成签到,获得积分10
2秒前
2秒前
3秒前
集力申完成签到,获得积分10
3秒前
叭叭发布了新的文献求助10
3秒前
在水一方应助练习者采纳,获得10
4秒前
tuzhihong完成签到,获得积分10
4秒前
勤恳函完成签到,获得积分10
4秒前
4秒前
任小九发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
阿钱小钱完成签到 ,获得积分10
5秒前
浮云发布了新的文献求助10
6秒前
6秒前
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
Huay发布了新的文献求助10
7秒前
8秒前
what完成签到,获得积分10
8秒前
tuzhihong发布了新的文献求助30
8秒前
黄垚完成签到,获得积分10
8秒前
ding应助彩虹猫之刃采纳,获得10
8秒前
传奇3应助lyhsg采纳,获得10
8秒前
然然完成签到,获得积分20
8秒前
夏天的小沐沐完成签到,获得积分10
10秒前
科研完成签到 ,获得积分10
10秒前
科研通AI2S应助寒冷的寻菱采纳,获得10
10秒前
小沉沉发布了新的文献求助10
10秒前
haowu发布了新的文献求助10
10秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122356
求助须知:如何正确求助?哪些是违规求助? 2772858
关于积分的说明 7714795
捐赠科研通 2428308
什么是DOI,文献DOI怎么找? 1289700
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183