亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Antihypertensive Drug Recommendations for Reducing Arterial Stiffness in Hypertensive Patients: A Machine Learning-Based Multi-Cohort Study (RIGIPREV Study) (Preprint)

预印本 医学 抗高血压药 动脉硬化 队列 药品 物理疗法 内科学 血压 药理学 计算机科学 万维网
作者
Iván Cavero‐Redondo,Arturo Martínez‐Rodrigo,Alicia Saz‐Lara,Nerea Moreno-Herráiz,Verónica Casado Vicente,Leticia Gómez‐Sánchez,Luis García‐Ortiz,Manuel A. Gómez‐Marcos
出处
期刊:Journal of Medical Internet Research 卷期号:26: e54357-e54357
标识
DOI:10.2196/54357
摘要

Background High systolic blood pressure is one of the leading global risk factors for mortality, contributing significantly to cardiovascular diseases. Despite advances in treatment, a large proportion of patients with hypertension do not achieve optimal blood pressure control. Arterial stiffness (AS), measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and overall mortality. Various antihypertensive drugs exhibit differential effects on PWV, but the extent to which these effects vary depending on individual patient characteristics is not well understood. Given the complexity of selecting the most appropriate antihypertensive medication for reducing PWV, machine learning (ML) techniques offer an opportunity to improve personalized treatment recommendations. Objective This study aims to develop an ML model that provides personalized recommendations for antihypertensive medications aimed at reducing PWV. The model considers individual patient characteristics, such as demographic factors, clinical data, and cardiovascular measurements, to identify the most suitable antihypertensive agent for improving AS. Methods This study, known as the RIGIPREV study, used data from the EVA, LOD-DIABETES, and EVIDENT studies involving individuals with hypertension with baseline and follow-up measurements. Antihypertensive drugs were grouped into classes such as angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), β-blockers, diuretics, and combinations of diuretics with ACEIs or ARBs. The primary outcomes were carotid-femoral and brachial-ankle PWV, while the secondary outcomes included various cardiovascular, anthropometric, and biochemical parameters. A multioutput regressor using 6 random forest models was used to predict the impact of each antihypertensive class on PWV reduction. Model performance was evaluated using the coefficient of determination (R2) and mean squared error. Results The random forest models exhibited strong predictive capabilities, with internal validation yielding R2 values between 0.61 and 0.74, while external validation showed a range of 0.26 to 0.46. The mean squared values ranged from 0.08 to 0.22 for internal validation and from 0.29 to 0.45 for external validation. Variable importance analysis revealed that glycated hemoglobin and weight were the most critical predictors for ACEIs, while carotid-femoral PWV and total cholesterol were key variables for ARBs. The decision tree model achieved an accuracy of 84.02% in identifying the most suitable antihypertensive drug based on individual patient characteristics. Furthermore, the system’s recommendations for ARBs matched 55.3% of patients’ original prescriptions. Conclusions This study demonstrates the utility of ML techniques in providing personalized treatment recommendations for antihypertensive therapy. By accounting for individual patient characteristics, the model improves the selection of drugs that control blood pressure and reduce AS. These findings could significantly aid clinicians in optimizing hypertension management and reducing cardiovascular risk. However, further studies with larger and more diverse populations are necessary to validate these results and extend the model’s applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36秒前
qiuxuan100发布了新的文献求助10
37秒前
1分钟前
清爽夜雪完成签到,获得积分10
1分钟前
2分钟前
李健应助科研通管家采纳,获得30
2分钟前
北74发布了新的文献求助10
4分钟前
4分钟前
Lyj123发布了新的文献求助10
4分钟前
勺子爱西瓜完成签到,获得积分10
4分钟前
4分钟前
北74完成签到,获得积分20
4分钟前
Owen应助Lyj123采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
YXM发布了新的文献求助10
4分钟前
所所应助sssssssxy采纳,获得10
4分钟前
5分钟前
5分钟前
sssssssxy发布了新的文献求助10
5分钟前
sssssssxy完成签到,获得积分20
5分钟前
5分钟前
6分钟前
6分钟前
33应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
科研通AI2S应助坦率的四娘采纳,获得10
6分钟前
琪琪发布了新的文献求助10
7分钟前
7分钟前
8分钟前
automan发布了新的文献求助10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
烟花应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
沉香续断发布了新的文献求助10
8分钟前
Kashing完成签到,获得积分10
8分钟前
8分钟前
Akim应助沉香续断采纳,获得10
8分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3381303
求助须知:如何正确求助?哪些是违规求助? 2996209
关于积分的说明 8767787
捐赠科研通 2681443
什么是DOI,文献DOI怎么找? 1468532
科研通“疑难数据库(出版商)”最低求助积分说明 679018
邀请新用户注册赠送积分活动 671111