Exploring Nurses' Behavioural Intention to Adopt AI Technology: The Perspectives of Social Influence, Perceived Job Stress and Human–Machine Trust

一致性 服从 心理学 压力源 背景(考古学) 情感(语言学) 工作态度 社会心理学 非概率抽样 应用心理学 结构方程建模 社会支持 雪球取样 工作表现 工作满意度 临床心理学 医学 计算机科学 古生物学 人口 环境卫生 沟通 病理 机器学习 生物
作者
Chin‐Hung Chen,Wan‐I Lee
出处
期刊:Journal of Advanced Nursing [Wiley]
标识
DOI:10.1111/jan.16495
摘要

ABSTRACT Aim This study examines how social influence, human–machine trust and perceived job stress affect nurses' behavioural intentions towards AI‐assisted care technology adoption from a new perspective and framework. It also explores the interrelationships between different types of social influence and job stress dimensions to fill gaps in academic literature. Design A quantitative cross‐sectional study. Methods Five hospitals in Taiwan that had implemented AI solutions were selected using purposive sampling. The scales, adapted from relevant literature, were translated into Chinese and modified for context. Questionnaires were distributed to nurses via snowball sampling from May 15 to June 10, 2023. A total of 283 valid questionnaires were analysed using the partial least squares structural equation modelling method. Results Conformity, obedience and human–machine trust were positively correlated with behavioural intention, while compliance was negatively correlated. Perceived job stress did not significantly affect behavioural intention. Compliance was positively associated with all three job stress dimensions: job uncertainty, technophobia and time pressure, while obedience was correlated with job uncertainty. Conclusion Social influence and human–machine trust are critical factors in nurses' intentions to adopt AI technology. The lack of significant effects from perceived stress suggests that nurses' personal resources mitigate potential stress associated with AI implementation. The study reveals the complex dynamics regarding different types of social influence, human–machine trust and job stress in the context of AI adoption in healthcare. Impact This research extends beyond conventional technology acceptance models by incorporating perspectives on organisational internal stressors and AI‐related job stress. It offers insights into the coping mechanisms during the pre‐adaption AI process in nursing, highlighting the need for nuanced management approaches. The findings emphasise the importance of considering technological and psychosocial factors in successful AI implementation in healthcare settings. Patient or Public Contribution No Patient or Public Contribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助aikanwenxian采纳,获得10
1秒前
2秒前
zhuo完成签到,获得积分10
3秒前
3秒前
爆米花应助娃哈哈采纳,获得10
4秒前
4秒前
香蕉静芙完成签到,获得积分20
5秒前
keke发布了新的文献求助20
6秒前
7秒前
闹闹发布了新的文献求助10
8秒前
十八完成签到,获得积分10
9秒前
思源应助香蕉静芙采纳,获得10
9秒前
9秒前
sssssss应助高挑的小蕊采纳,获得10
11秒前
renpp822发布了新的文献求助20
11秒前
11秒前
Emily发布了新的文献求助10
13秒前
yaya发布了新的文献求助10
14秒前
wanci应助hyh采纳,获得10
14秒前
15秒前
rare发布了新的文献求助30
15秒前
16秒前
娃哈哈完成签到,获得积分20
16秒前
19秒前
娃哈哈发布了新的文献求助10
19秒前
19秒前
NexusExplorer应助dyy采纳,获得10
20秒前
daker发布了新的文献求助30
20秒前
20秒前
yaya完成签到,获得积分10
21秒前
zhangyidian应助梅良心采纳,获得10
21秒前
professor完成签到,获得积分10
22秒前
rare完成签到,获得积分10
22秒前
23秒前
21发布了新的文献求助10
23秒前
24秒前
从容芷容应助满意的怜晴采纳,获得10
25秒前
25秒前
粗心的chen发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174