亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differential Capillary and Large Vessel Analysis Improves OCTA Classification of Diabetic Retinopathy

糖尿病性视网膜病变 眼科 医学 差速器(机械装置) 内科学 心脏病学 糖尿病 内分泌学 物理 热力学
作者
Mansour Abtahi,David Le,Behrouz Ebrahimi,Albert K. Dadzie,Mojtaba Rahimi,Yi‐Ting Hsieh,Michael J. Heiferman,Jennifer I. Lim,Xincheng Yao
出处
期刊:Investigative Ophthalmology & Visual Science [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:65 (10): 20-20 被引量:2
标识
DOI:10.1167/iovs.65.10.20
摘要

Purpose: This study aimed to investigate the impact of distinctive capillary–large vessel (CLV) analysis in optical coherence tomography angiography (OCTA) on the classification performance of diabetic retinopathy (DR). Methods: This multicenter study analyzed 212 OCTA images from 146 patients, including 28 controls, 36 diabetic patients without DR (NoDR), 31 with mild non-proliferative DR (NPDR), 28 with moderate NPDR, and 23 with severe NPDR. Quantitative features were derived from the whole image as well as the parafovea and perifovea regions. A support vector machine classifier was employed for DR classification. The accuracy and area under the receiver operating characteristic curve were used to evaluate the classification performance, utilizing features derived from the whole image and specific regions, both before and after CLV analysis. Results: Differential CLV analysis significantly improved OCTA classification of DR. In binary classifications, accuracy improved by 11.81%, rising from 77.45% to 89.26%, when utilizing whole image features. For multiclass classifications, accuracy increased by 7.55%, from 78.68% to 86.23%. Incorporating features from the whole image, parafovea, and perifovea further improved binary classification accuracy from 83.07% to 93.80%, and multiclass accuracy from 82.64% to 87.92%. Conclusions: This study demonstrated that feature changes in capillaries are more sensitive during DR progression, and CLV analysis can significantly improve DR classification performance by extracting features that are specific to large vessels and capillaries in OCTA. Incorporating regional features further improves DR classification accuracy. Differential CLV analysis promises better disease screening, diagnosis, and treatment outcome assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助璐璐姐最牛逼采纳,获得10
3秒前
4秒前
热爱科研的小孩完成签到,获得积分20
4秒前
6秒前
yuanyuan发布了新的文献求助10
7秒前
wu发布了新的文献求助10
8秒前
9秒前
shy完成签到,获得积分10
9秒前
9秒前
YifanWang完成签到,获得积分0
11秒前
ray发布了新的文献求助10
13秒前
zz发布了新的文献求助30
14秒前
zr237618发布了新的文献求助10
14秒前
英姑应助ray采纳,获得10
18秒前
今后应助yuanyuan采纳,获得10
21秒前
ramsey33完成签到 ,获得积分10
24秒前
26秒前
独特的元霜完成签到,获得积分10
28秒前
Criminology34举报kiki求助涉嫌违规
45秒前
我是老大应助白奕采纳,获得10
46秒前
丘比特应助健忘的板凳采纳,获得10
49秒前
Zhr完成签到 ,获得积分10
52秒前
54秒前
55秒前
57秒前
wondor1111发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助凶狠的秀发采纳,获得10
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
大个应助yuanyuan采纳,获得10
1分钟前
old幽露露完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
LIFE2020完成签到 ,获得积分10
1分钟前
level完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助殷楷霖采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898