Differential Capillary and Large Vessel Analysis Improves OCTA Classification of Diabetic Retinopathy

糖尿病性视网膜病变 眼科 医学 差速器(机械装置) 内科学 心脏病学 糖尿病 内分泌学 物理 热力学
作者
Mansour Abtahi,David Le,Behrouz Ebrahimi,Albert K. Dadzie,Mojtaba Rahimi,Yi‐Ting Hsieh,Michael J. Heiferman,Jennifer I. Lim,Xincheng Yao
出处
期刊:Investigative Ophthalmology & Visual Science [Cadmus Press]
卷期号:65 (10): 20-20 被引量:2
标识
DOI:10.1167/iovs.65.10.20
摘要

Purpose: This study aimed to investigate the impact of distinctive capillary–large vessel (CLV) analysis in optical coherence tomography angiography (OCTA) on the classification performance of diabetic retinopathy (DR). Methods: This multicenter study analyzed 212 OCTA images from 146 patients, including 28 controls, 36 diabetic patients without DR (NoDR), 31 with mild non-proliferative DR (NPDR), 28 with moderate NPDR, and 23 with severe NPDR. Quantitative features were derived from the whole image as well as the parafovea and perifovea regions. A support vector machine classifier was employed for DR classification. The accuracy and area under the receiver operating characteristic curve were used to evaluate the classification performance, utilizing features derived from the whole image and specific regions, both before and after CLV analysis. Results: Differential CLV analysis significantly improved OCTA classification of DR. In binary classifications, accuracy improved by 11.81%, rising from 77.45% to 89.26%, when utilizing whole image features. For multiclass classifications, accuracy increased by 7.55%, from 78.68% to 86.23%. Incorporating features from the whole image, parafovea, and perifovea further improved binary classification accuracy from 83.07% to 93.80%, and multiclass accuracy from 82.64% to 87.92%. Conclusions: This study demonstrated that feature changes in capillaries are more sensitive during DR progression, and CLV analysis can significantly improve DR classification performance by extracting features that are specific to large vessels and capillaries in OCTA. Incorporating regional features further improves DR classification accuracy. Differential CLV analysis promises better disease screening, diagnosis, and treatment outcome assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinx123456完成签到,获得积分10
1秒前
单纯冰棍完成签到,获得积分20
1秒前
金海完成签到,获得积分10
1秒前
liqian发布了新的文献求助10
1秒前
1秒前
XIEMIN完成签到,获得积分10
2秒前
贺贺完成签到 ,获得积分20
3秒前
3秒前
悦耳荟完成签到,获得积分10
3秒前
4秒前
4秒前
joejo1124完成签到 ,获得积分10
5秒前
sl发布了新的文献求助10
6秒前
hhh发布了新的文献求助10
6秒前
爱吃藕粉凉羹的奶油完成签到,获得积分20
7秒前
动听煎饼完成签到 ,获得积分10
8秒前
明理冬瓜完成签到,获得积分10
8秒前
bkagyin应助cldg采纳,获得10
8秒前
小马甲应助不站在雾里采纳,获得10
8秒前
pp完成签到 ,获得积分0
9秒前
zhangjianzeng完成签到 ,获得积分10
9秒前
史小菜应助云轩采纳,获得20
10秒前
伏伏雅逸发布了新的文献求助10
10秒前
李健应助荒野风采纳,获得10
11秒前
Popeye应助单纯血茗采纳,获得10
11秒前
淡然冬灵发布了新的文献求助10
11秒前
Popeye应助单纯血茗采纳,获得10
11秒前
荔枝的油饼iKun完成签到,获得积分10
12秒前
Bosen完成签到,获得积分10
12秒前
Astraeus完成签到 ,获得积分10
13秒前
fengyuenanche完成签到,获得积分10
14秒前
五虎完成签到,获得积分10
15秒前
Akim应助Rollei采纳,获得10
16秒前
hoshi1018完成签到,获得积分10
17秒前
友好曲奇完成签到,获得积分10
17秒前
dongdong完成签到 ,获得积分10
18秒前
CR7完成签到,获得积分0
19秒前
左丘忻完成签到,获得积分10
19秒前
凤迎雪飘完成签到,获得积分10
19秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048