Differential Capillary and Large Vessel Analysis Improves OCTA Classification of Diabetic Retinopathy

糖尿病性视网膜病变 眼科 医学 差速器(机械装置) 内科学 心脏病学 糖尿病 内分泌学 物理 热力学
作者
Mansour Abtahi,David Le,Behrouz Ebrahimi,Albert K. Dadzie,Mojtaba Rahimi,Yi‐Ting Hsieh,Michael J. Heiferman,Jennifer I. Lim,Xincheng Yao
出处
期刊:Investigative Ophthalmology & Visual Science [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:65 (10): 20-20 被引量:2
标识
DOI:10.1167/iovs.65.10.20
摘要

Purpose: This study aimed to investigate the impact of distinctive capillary–large vessel (CLV) analysis in optical coherence tomography angiography (OCTA) on the classification performance of diabetic retinopathy (DR). Methods: This multicenter study analyzed 212 OCTA images from 146 patients, including 28 controls, 36 diabetic patients without DR (NoDR), 31 with mild non-proliferative DR (NPDR), 28 with moderate NPDR, and 23 with severe NPDR. Quantitative features were derived from the whole image as well as the parafovea and perifovea regions. A support vector machine classifier was employed for DR classification. The accuracy and area under the receiver operating characteristic curve were used to evaluate the classification performance, utilizing features derived from the whole image and specific regions, both before and after CLV analysis. Results: Differential CLV analysis significantly improved OCTA classification of DR. In binary classifications, accuracy improved by 11.81%, rising from 77.45% to 89.26%, when utilizing whole image features. For multiclass classifications, accuracy increased by 7.55%, from 78.68% to 86.23%. Incorporating features from the whole image, parafovea, and perifovea further improved binary classification accuracy from 83.07% to 93.80%, and multiclass accuracy from 82.64% to 87.92%. Conclusions: This study demonstrated that feature changes in capillaries are more sensitive during DR progression, and CLV analysis can significantly improve DR classification performance by extracting features that are specific to large vessels and capillaries in OCTA. Incorporating regional features further improves DR classification accuracy. Differential CLV analysis promises better disease screening, diagnosis, and treatment outcome assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
小小油应助科研通管家采纳,获得30
刚刚
锅包又给锅包又的求助进行了留言
刚刚
黑猫乾杯应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
keyan应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
Since_2026完成签到,获得积分10
1秒前
Xu完成签到,获得积分10
1秒前
脑洞疼应助陈秋艳采纳,获得10
2秒前
无所谓的所谓完成签到,获得积分10
2秒前
2秒前
Criminology34应助123456采纳,获得10
3秒前
Xu发布了新的文献求助10
3秒前
3秒前
Winnie完成签到,获得积分10
3秒前
小闵完成签到,获得积分10
3秒前
Rivers发布了新的文献求助10
3秒前
万里海天完成签到,获得积分20
4秒前
4秒前
无花果应助feng采纳,获得10
4秒前
zww发布了新的文献求助10
4秒前
XYN1发布了新的文献求助10
5秒前
Os1完成签到,获得积分10
5秒前
陈陈陈完成签到,获得积分20
5秒前
rose完成签到,获得积分10
5秒前
1111完成签到,获得积分10
5秒前
无极微光应助PHOTONS采纳,获得20
6秒前
轻松的梦竹完成签到,获得积分10
6秒前
yaoyao6688完成签到,获得积分10
6秒前
yuechat完成签到,获得积分10
7秒前
随心发布了新的文献求助10
7秒前
7秒前
杨馨蕊完成签到 ,获得积分10
8秒前
张XX完成签到,获得积分10
8秒前
诚心盼海发布了新的文献求助10
8秒前
科目三应助机器猫nzy采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188