Differential Capillary and Large Vessel Analysis Improves OCTA Classification of Diabetic Retinopathy

糖尿病性视网膜病变 眼科 医学 差速器(机械装置) 内科学 心脏病学 糖尿病 内分泌学 物理 热力学
作者
Mansour Abtahi,David Le,Behrouz Ebrahimi,Albert K. Dadzie,Mojtaba Rahimi,Yi‐Ting Hsieh,Michael J. Heiferman,Jennifer I. Lim,Xincheng Yao
出处
期刊:Investigative Ophthalmology & Visual Science [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:65 (10): 20-20 被引量:1
标识
DOI:10.1167/iovs.65.10.20
摘要

Purpose: This study aimed to investigate the impact of distinctive capillary–large vessel (CLV) analysis in optical coherence tomography angiography (OCTA) on the classification performance of diabetic retinopathy (DR). Methods: This multicenter study analyzed 212 OCTA images from 146 patients, including 28 controls, 36 diabetic patients without DR (NoDR), 31 with mild non-proliferative DR (NPDR), 28 with moderate NPDR, and 23 with severe NPDR. Quantitative features were derived from the whole image as well as the parafovea and perifovea regions. A support vector machine classifier was employed for DR classification. The accuracy and area under the receiver operating characteristic curve were used to evaluate the classification performance, utilizing features derived from the whole image and specific regions, both before and after CLV analysis. Results: Differential CLV analysis significantly improved OCTA classification of DR. In binary classifications, accuracy improved by 11.81%, rising from 77.45% to 89.26%, when utilizing whole image features. For multiclass classifications, accuracy increased by 7.55%, from 78.68% to 86.23%. Incorporating features from the whole image, parafovea, and perifovea further improved binary classification accuracy from 83.07% to 93.80%, and multiclass accuracy from 82.64% to 87.92%. Conclusions: This study demonstrated that feature changes in capillaries are more sensitive during DR progression, and CLV analysis can significantly improve DR classification performance by extracting features that are specific to large vessels and capillaries in OCTA. Incorporating regional features further improves DR classification accuracy. Differential CLV analysis promises better disease screening, diagnosis, and treatment outcome assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳代真发布了新的文献求助10
刚刚
彬墩墩完成签到,获得积分10
1秒前
海风奕婕发布了新的文献求助30
2秒前
Cryconnor发布了新的文献求助10
2秒前
2秒前
single发布了新的文献求助10
2秒前
雪小岳发布了新的文献求助10
3秒前
4秒前
smile完成签到,获得积分10
4秒前
5秒前
英俊的鱼发布了新的文献求助10
5秒前
善学以致用应助阿飞采纳,获得10
6秒前
111完成签到,获得积分10
6秒前
immm完成签到,获得积分10
6秒前
如意的向日葵完成签到,获得积分10
6秒前
希望天下0贩的0应助fffff采纳,获得10
7秒前
8秒前
烂漫的汲发布了新的文献求助10
8秒前
Ding-Ding完成签到,获得积分10
8秒前
hql关闭了hql文献求助
8秒前
9秒前
宇文千万完成签到,获得积分10
9秒前
panx发布了新的文献求助10
10秒前
10秒前
opair发布了新的文献求助50
12秒前
12秒前
伍子丐的猫完成签到,获得积分10
13秒前
13秒前
13秒前
single发布了新的文献求助10
14秒前
疯狂的翠梅完成签到,获得积分10
15秒前
Cryconnor完成签到,获得积分10
15秒前
16秒前
16秒前
悦耳代真完成签到,获得积分20
16秒前
tiankaiwen发布了新的文献求助10
17秒前
毛竹完成签到 ,获得积分10
17秒前
酷酷的夜安完成签到 ,获得积分10
17秒前
汤孤风发布了新的文献求助10
17秒前
cloud完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655