Differential Capillary and Large Vessel Analysis Improves OCTA Classification of Diabetic Retinopathy

糖尿病性视网膜病变 眼科 医学 差速器(机械装置) 内科学 心脏病学 糖尿病 内分泌学 物理 热力学
作者
Mansour Abtahi,David Le,Behrouz Ebrahimi,Albert K. Dadzie,Mojtaba Rahimi,Yi‐Ting Hsieh,Michael J. Heiferman,Jennifer I. Lim,Xincheng Yao
出处
期刊:Investigative Ophthalmology & Visual Science [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:65 (10): 20-20 被引量:2
标识
DOI:10.1167/iovs.65.10.20
摘要

Purpose: This study aimed to investigate the impact of distinctive capillary–large vessel (CLV) analysis in optical coherence tomography angiography (OCTA) on the classification performance of diabetic retinopathy (DR). Methods: This multicenter study analyzed 212 OCTA images from 146 patients, including 28 controls, 36 diabetic patients without DR (NoDR), 31 with mild non-proliferative DR (NPDR), 28 with moderate NPDR, and 23 with severe NPDR. Quantitative features were derived from the whole image as well as the parafovea and perifovea regions. A support vector machine classifier was employed for DR classification. The accuracy and area under the receiver operating characteristic curve were used to evaluate the classification performance, utilizing features derived from the whole image and specific regions, both before and after CLV analysis. Results: Differential CLV analysis significantly improved OCTA classification of DR. In binary classifications, accuracy improved by 11.81%, rising from 77.45% to 89.26%, when utilizing whole image features. For multiclass classifications, accuracy increased by 7.55%, from 78.68% to 86.23%. Incorporating features from the whole image, parafovea, and perifovea further improved binary classification accuracy from 83.07% to 93.80%, and multiclass accuracy from 82.64% to 87.92%. Conclusions: This study demonstrated that feature changes in capillaries are more sensitive during DR progression, and CLV analysis can significantly improve DR classification performance by extracting features that are specific to large vessels and capillaries in OCTA. Incorporating regional features further improves DR classification accuracy. Differential CLV analysis promises better disease screening, diagnosis, and treatment outcome assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助负责冰海采纳,获得10
2秒前
Knowledge完成签到,获得积分10
3秒前
狗大王发布了新的文献求助10
3秒前
共享精神应助WangPeidi采纳,获得10
4秒前
why完成签到,获得积分10
6秒前
6秒前
诚心绿兰完成签到,获得积分10
8秒前
小二郎应助Rose采纳,获得10
8秒前
8秒前
浮游应助欣喜的妙竹采纳,获得10
9秒前
CWY发布了新的文献求助10
10秒前
11秒前
YYY完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
splaker7发布了新的文献求助50
13秒前
14秒前
TayTay98k完成签到,获得积分10
15秒前
15秒前
16秒前
英勇的冰之完成签到,获得积分10
17秒前
18秒前
打打应助Tina采纳,获得10
19秒前
19秒前
19秒前
20秒前
lawang发布了新的文献求助10
20秒前
21秒前
无极微光应助玩命做科研采纳,获得20
21秒前
SciGPT应助CWY采纳,获得10
21秒前
舒适傲白完成签到,获得积分10
21秒前
lawang发布了新的文献求助10
22秒前
wuchun完成签到,获得积分10
22秒前
22秒前
22秒前
无花果应助殷勤的凡白采纳,获得10
22秒前
22秒前
grzzz完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
翁曼雁完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039