已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Differential Capillary and Large Vessel Analysis Improves OCTA Classification of Diabetic Retinopathy

糖尿病性视网膜病变 眼科 医学 差速器(机械装置) 内科学 心脏病学 糖尿病 内分泌学 物理 热力学
作者
Mansour Abtahi,David Le,Behrouz Ebrahimi,Albert K. Dadzie,Mojtaba Rahimi,Yi‐Ting Hsieh,Michael J. Heiferman,Jennifer I. Lim,Xincheng Yao
出处
期刊:Investigative Ophthalmology & Visual Science [Cadmus Press]
卷期号:65 (10): 20-20 被引量:2
标识
DOI:10.1167/iovs.65.10.20
摘要

Purpose: This study aimed to investigate the impact of distinctive capillary–large vessel (CLV) analysis in optical coherence tomography angiography (OCTA) on the classification performance of diabetic retinopathy (DR). Methods: This multicenter study analyzed 212 OCTA images from 146 patients, including 28 controls, 36 diabetic patients without DR (NoDR), 31 with mild non-proliferative DR (NPDR), 28 with moderate NPDR, and 23 with severe NPDR. Quantitative features were derived from the whole image as well as the parafovea and perifovea regions. A support vector machine classifier was employed for DR classification. The accuracy and area under the receiver operating characteristic curve were used to evaluate the classification performance, utilizing features derived from the whole image and specific regions, both before and after CLV analysis. Results: Differential CLV analysis significantly improved OCTA classification of DR. In binary classifications, accuracy improved by 11.81%, rising from 77.45% to 89.26%, when utilizing whole image features. For multiclass classifications, accuracy increased by 7.55%, from 78.68% to 86.23%. Incorporating features from the whole image, parafovea, and perifovea further improved binary classification accuracy from 83.07% to 93.80%, and multiclass accuracy from 82.64% to 87.92%. Conclusions: This study demonstrated that feature changes in capillaries are more sensitive during DR progression, and CLV analysis can significantly improve DR classification performance by extracting features that are specific to large vessels and capillaries in OCTA. Incorporating regional features further improves DR classification accuracy. Differential CLV analysis promises better disease screening, diagnosis, and treatment outcome assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助薄荷味汽水采纳,获得10
2秒前
5秒前
英俊的铭应助LukeLion采纳,获得10
6秒前
sjj发布了新的文献求助10
11秒前
Cherie77完成签到 ,获得积分10
15秒前
zl13332完成签到 ,获得积分10
17秒前
余的日记本完成签到,获得积分10
18秒前
桐桐应助sjj采纳,获得10
23秒前
23秒前
25秒前
27秒前
诚心的初阳完成签到,获得积分10
28秒前
decade发布了新的文献求助10
30秒前
随风完成签到,获得积分0
31秒前
sjj完成签到,获得积分10
32秒前
32秒前
行悟完成签到 ,获得积分10
33秒前
34秒前
jiangn12完成签到,获得积分10
37秒前
ll完成签到 ,获得积分10
38秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
李金文应助科研通管家采纳,获得10
43秒前
Ava应助科研通管家采纳,获得30
43秒前
43秒前
cdc完成签到 ,获得积分10
45秒前
科研通AI5应助薄荷味汽水采纳,获得10
49秒前
搜集达人应助pol采纳,获得10
50秒前
综述王完成签到 ,获得积分10
55秒前
1分钟前
miaomiao完成签到 ,获得积分10
1分钟前
努力发自然完成签到 ,获得积分10
1分钟前
啦啦啦啦发布了新的文献求助10
1分钟前
1分钟前
啊哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
研友_VZG7GZ应助Runjin_Hu采纳,获得10
1分钟前
Sayaka发布了新的文献求助10
1分钟前
1分钟前
肖易应助pphu采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610489
求助须知:如何正确求助?哪些是违规求助? 4016443
关于积分的说明 12435173
捐赠科研通 3698029
什么是DOI,文献DOI怎么找? 2039187
邀请新用户注册赠送积分活动 1072053
科研通“疑难数据库(出版商)”最低求助积分说明 955729