Finite-horizon energy allocation scheme in energy harvesting-based linear wireless sensor network

计算机科学 无线传感器网络 能量收集 瓶颈 可再生能源 能量(信号处理) 启发式 无线 吞吐量 无线网络 计算机网络 数学优化 分布式计算 电信 数学 电气工程 工程类 嵌入式系统 操作系统 统计
作者
Shengbo Chen,Shuai Li,Guanghui Wang,Keping Yu
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:162: 107493-107493 被引量:1
标识
DOI:10.1016/j.future.2024.107493
摘要

Linear wireless sensor networks (LWSNs) are a specialized topology of wireless sensor networks (WSNs) widely used for environmental monitoring. Traditional WSNs rely on batteries for energy supply, limiting their performance due to battery capacity constraints, while renewable energy harvesting technology is an effective approach to alleviating the battery capacity bottleneck. However, the stochastic nature of renewable energy makes designing an efficient energy management scheme for network performance improvement a compelling research problem. In this paper, we investigate the problem of maximizing throughput over a finite-horizon time period for an energy harvesting-based linear wireless sensor network (EH-LWSN). The solution to the original problem is very complex, and this complexity mainly arises from two factors. First, the optimal energy allocation scheme has temporal coupling, i.e., the current optimal strategy relies on the energy harvested in the future. Second, the optimal energy allocation scheme has spatial coupling, i.e., the current optimal strategy of any node relies on the available energy of other nodes in the network. To address these challenges, we propose an iterative energy allocation algorithm for EH-LWSN. Firstly, we theoretically prove the optimality of the algorithm and analyze the time complexity of the algorithm. Next, we design the corresponding distributed version and consider the case of estimating the energy harvest. Finally, through experiments using a real-world renewable energy dataset, the results show that the proposed algorithm outperforms the other two heuristics energy allocation schemes in terms of network throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安渝发布了新的文献求助10
1秒前
1秒前
英姑应助Fx采纳,获得10
1秒前
Tesia完成签到,获得积分10
2秒前
淡然的小霸王完成签到,获得积分10
2秒前
3秒前
3秒前
小马发布了新的文献求助10
4秒前
风中的以山完成签到,获得积分10
4秒前
4秒前
红绿蓝完成签到 ,获得积分10
4秒前
子车茗应助gt采纳,获得20
4秒前
科研通AI6应助gt采纳,获得10
4秒前
4秒前
Jared应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
嘿嘿应助科研通管家采纳,获得30
4秒前
Stella应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
风吹麦田应助科研通管家采纳,获得80
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Stella应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
Frank应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
Stella应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462