亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable machine‐learning‐based prediction of QCT/FEA‐calculated femoral strength under stance loading configuration using radiomics features

定量计算机断层扫描 均方误差 有限元法 数学 特征选择 决定系数 皮尔逊积矩相关系数 还原(数学) 计算机科学 模式识别(心理学) 算法 人工智能 统计 结构工程 工程类 医学 骨密度 几何学 骨质疏松症 内分泌学
作者
Shuyu Liu,Meng Zhang,He Gong,Shaowei Jia,Jinming Zhang,Zhengbin Jia
出处
期刊:Journal of Orthopaedic Research [Wiley]
标识
DOI:10.1002/jor.25962
摘要

Abstract Finite element analysis can provide precise femoral strength assessment. However, its modeling procedures were complex and time‐consuming. This study aimed to develop a model to evaluate femoral strength calculated by quantitative computed tomography‐based finite element analysis (QCT/FEA) under stance loading configuration, offering an effective, simple, and explainable method. One hundred participants with hip QCT images were selected from the Hong Kong part of the Osteoporotic fractures in men cohort. Radiomics features were extracted from QCT images. Filter method, Pearson correlation analysis, and least absolute shrinkage and selection operator method were employed for feature selection and dimension reduction. The remaining features were utilized as inputs, and femoral strengths were calculated as the ground truth through QCT/FEA. Support vector regression was applied to develop a femoral strength prediction model. The influence of various numbers of input features on prediction performance was compared, and the femoral strength prediction model was established. Finally, Shapley additive explanation, accumulated local effects, and partial dependency plot methods were used to explain the model. The results indicated that the model performed best when six radiomics features were selected. The coefficient of determination ( R 2 ), the root mean square error, the normalized root mean square error, and the mean squared error on the testing set were 0.820, 1016.299 N, 10.645%, and 750.827 N, respectively. Additionally, these features all positively contributed to femoral strength prediction. In conclusion, this study provided a noninvasive, effective, and explainable method of femoral strength assessment, and it may have clinical application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
1分钟前
邹醉蓝完成签到,获得积分10
2分钟前
2分钟前
红油曲奇完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
DrCuiTianjin完成签到 ,获得积分10
3分钟前
yunxiao完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
扑流萤发布了新的文献求助10
4分钟前
慕青应助扑流萤采纳,获得10
4分钟前
水的很厉害完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
张同学快去做实验呀完成签到,获得积分10
5分钟前
33应助长颈鹿采纳,获得10
5分钟前
zzz4743完成签到,获得积分0
5分钟前
WeiPaiFXZ完成签到 ,获得积分10
5分钟前
6分钟前
长颈鹿发布了新的文献求助10
6分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
坚强的广山完成签到,获得积分0
7分钟前
如意竺完成签到,获得积分10
7分钟前
asdfqwer完成签到 ,获得积分0
7分钟前
7分钟前
33完成签到,获得积分10
7分钟前
7分钟前
非洲大象完成签到,获得积分10
7分钟前
7分钟前
Hello应助开拖拉机的芍药采纳,获得10
8分钟前
keepmoving_12完成签到 ,获得积分10
8分钟前
Bigweenine完成签到,获得积分10
8分钟前
danli完成签到 ,获得积分10
9分钟前
席江海完成签到,获得积分10
9分钟前
小马甲应助哈哈带采纳,获得30
9分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244752
求助须知:如何正确求助?哪些是违规求助? 2888410
关于积分的说明 8252853
捐赠科研通 2556864
什么是DOI,文献DOI怎么找? 1385423
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626269