mRNA expression insights: Unraveling the relationship between COPD and lung cancer

慢性阻塞性肺病 肺癌 小桶 癌症 Lasso(编程语言) 医学 基因 基因表达 内科学 肿瘤科 生物信息学 计算生物学 生物 基因本体论 遗传学 计算机科学 万维网
作者
Gu Zhan,Jijia Sun,Lixin Wang
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (9)
标识
DOI:10.1002/jgm.3728
摘要

Abstract Background Lung cancer is a prevalent form of cancer worldwide. A possible link between lung cancer and chronic obstructive pulmonary disease (COPD) has been suggested by recent studies. The objective of our research was to analyze the mRNA expression patterns in both situations, with a specific emphasis on their biological functions and the pathways they are linked to. Method Data on COPD mRNA expression was collected from the NCBI‐GEO database, while information regarding lung cancer mRNA was acquired from The Cancer Genome Atlas database. To examine the association of COPD‐related scores in lung cancer patients, we utilized the ssGSEA algorithm for single sample gene set enrichment analysis. The possible routes were examined through the utilization of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Risk models were developed using Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Moreover, a GSEA was performed to investigate significant pathways among various risk groups. Result After identifying 17 genes that were differentially expressed and linked to COPD, we found that they met the criteria of having a false discovery rate < 0.05 and an absolute log 2 fold change > 0.585. By utilizing the ssGSEA algorithm, it became possible to classify individuals with lung cancer into two distinct groups based on their COPD status. Consequently, a seven‐gene risk model was developed specifically for these patients. The risk score was determined by applying the given formula: risk score = AC022784.1 × 0.0423737993775888 + CRISP3 × 0.0415322046890524 + MELTF × 0.0661848418476596 + MT2P1 × 0.111843227536117 + FAM83A‐AS1 × 0.045295939710361 + ZNF506 × −0.309489953363417 + ITGA6 × 0.01813978449589. The risk model associated with COPD showed a notable connection with different immune cells found in the lung cancer sample, including macrophages of M0/M1/M2 types, hematopoietic stem cells, mast cells, NK T cells and regulatory T cells. Overexpression of crucial genes was seen to enhance cell proliferation and invasive potential in the lung cancer sample. In the lung cancer sample, it was observed that an increase in ZNF506 expression enhanced both cell proliferation and invasion. Conclusion In conclusion, this study effectively examines the potential correlation between COPD and lung cancer. A prognostic model based on seven COPD‐associated genes demonstrated robust predictive potential in the lung cancer sample. Our analysis offers comprehensive insights for lung cancer patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rikki发布了新的文献求助10
刚刚
刚刚
佳音完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
1秒前
学术智子完成签到,获得积分10
1秒前
共享精神应助cdytjt采纳,获得10
1秒前
2秒前
2秒前
Thi发布了新的文献求助10
2秒前
3秒前
VDC应助LUJU采纳,获得30
3秒前
游一发布了新的文献求助10
3秒前
舟夏完成签到 ,获得积分10
3秒前
billyin发布了新的文献求助10
4秒前
4秒前
了一李应助qs采纳,获得10
4秒前
共享精神应助何必在乎采纳,获得10
5秒前
顺利的夜梦完成签到,获得积分10
5秒前
想跟这个世界讲个道理完成签到,获得积分10
5秒前
zwyingg完成签到,获得积分10
5秒前
Mental发布了新的文献求助10
6秒前
tracy发布了新的文献求助10
6秒前
7秒前
领导范儿应助欢喜的毛豆采纳,获得10
7秒前
Luis发布了新的文献求助10
8秒前
太阳花发布了新的文献求助20
9秒前
renshiq发布了新的文献求助10
9秒前
悦耳的诗云完成签到,获得积分10
11秒前
CRUSADER发布了新的文献求助10
11秒前
吃不起橘子了完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
gouzi关注了科研通微信公众号
14秒前
14秒前
这波你的吗完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382