Two-stage multilateral trade-based prediction model for freight transport carbon emission of Belt and Road countries along Eurasian Landbridges

阶段(地层学) 客运 贸易引力模型 国际贸易 业务 环境科学 运输工程 工程类 地质学 古生物学
作者
Eugene Y. Wong,Kev Kwok-Tung Ling,Allen H. Tai,Andrew Yuen
出处
期刊:International Journal of Sustainable Transportation [Informa]
卷期号:: 1-18 被引量:1
标识
DOI:10.1080/15568318.2024.2392190
摘要

Global freight distribution patterns have been affected by trading policies and the pandemic outbreak. The Belt and Road Initiative, trade conflicts, and the COVID-19 pandemic have changed the global logistics flow, shifting cargos from maritime and air transport to railway transport along the countries in the Eurasian Landbridge. Though railway freight emits less carbon than road truck transportation, the increased use of railway freight brings in a higher volume of carbon emissions to cities located along the landbridges. Achieving net zero carbon emission is becoming more important, but there is a lack of literature in assessing the environmental impact of cross-border railway logistics transportation among Belt and Road countries. A novel two-stage multilateral trade-based prediction model is developed, integrating a modified gravity model and nonlinear autoregressive neural network for trade and emission forecasting. The model evaluates railway freight along the landbridge over ten years and forecasts the impact of carbon emissions from trading and logistics along the corridor in the subsequent five years. It further analyses the emissions impact of the proposed Third Eurasian Landbridge and the extended Second Eurasian Landbridge. The findings provide insights for the development of railway freight transport, considering trade and logistics flow, carbon emission mitigation strategies, and sustainability impact between China and other Belt and Road countries. While countries such as India and Kazakhstan were forecast to have significant amounts of carbon emissions in the projected period, the rapid growths in locations with smaller emission amounts such as Kunming and Georgia should draw attention and require continuous monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助小鹿5460采纳,获得10
刚刚
情怀应助另一种感觉采纳,获得10
刚刚
简单平蓝发布了新的文献求助10
1秒前
复杂含灵发布了新的文献求助10
1秒前
bkagyin应助panda采纳,获得10
1秒前
2秒前
小猫来啦完成签到,获得积分10
2秒前
自由笙应助敬老院N号采纳,获得10
2秒前
2秒前
chengzi完成签到,获得积分10
2秒前
3秒前
qin希望应助科研通管家采纳,获得10
4秒前
小二郎应助YMAO采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
IceyCNZ应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
jianglin6完成签到,获得积分20
4秒前
苏卿应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研进化中完成签到,获得积分10
5秒前
IceyCNZ应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
杆杆完成签到,获得积分10
5秒前
5秒前
5秒前
闪闪芷波完成签到,获得积分10
5秒前
嗷嗷发布了新的文献求助10
6秒前
6秒前
snow完成签到,获得积分10
7秒前
田様应助半富半莲采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564154
求助须知:如何正确求助?哪些是违规求助? 3137367
关于积分的说明 9422052
捐赠科研通 2837751
什么是DOI,文献DOI怎么找? 1560082
邀请新用户注册赠送积分活动 729261
科研通“疑难数据库(出版商)”最低求助积分说明 717280