已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advancing Diabetic Macular Edema Detection from 3D Optical Coherence Tomography Scans: Integrating Privacy-Preserving AI and Generalizability Techniques — A Prospective Validation in Vietnam

概化理论 光学相干层析成像 糖尿病性黄斑水肿 医学 验光服务 眼科 人工智能 计算机科学 糖尿病性视网膜病变 心理学 糖尿病 发展心理学 内分泌学
作者
Truong Nguyen,Meirui Jiang,Dawei Yang,An Ran Ran,Ziqi Tang,Shuyi Zhang,Xiaoyan Hu,V. Tao Tran,Tran B.L. Dai,Diem T. Le,Nguyen T. Tan,Simon Szeto,Cherie YK Wong,Vivian W.K. Hui,Ken Tsang,Carmen Chan,Hunter K.L. Yuen,Victor T.T. Chan,Andrew C. Y. Mak,Mary Ho,Wilson W. K. Yip,Alvin L. Young,Theodore Leng,Gavin Siew Wei Tan,Tien Yin Wong,Peng-Ann Heng,Clement C. Tham,Timothy Y. Y. Lai,Triet Thanh Nguyen,Qi Dou,Carol Y. Cheung
标识
DOI:10.1056/aioa2400091
摘要

BackgroundDiabetic macular edema (DME) is the primary cause of irreversible vision loss among people with diabetes and can be accurately detected by using optical coherence tomography (OCT). We developed and validated a deep learning (DL) model to classify DME on OCT volumetric scans, enhanced by federated learning and advanced DL methods to safeguard patient privacy and improve model generalizability in analyzing unseen OCT scans. The performance and effectiveness of the DL model were then prospectively evaluated in a real-world diabetic retinopathy (DR) screening program in Vietnam.MethodsWe developed and externally tested a federated learning–based DL algorithm for detecting DME and further classifying center-involved DME (CI-DME) and non-CI-DME through three-dimensional OCT volumetric scans. The study used 8031 OCT volumes from 1958 participants with diabetes from Hong Kong, the United States, and Singapore. This DL model was prospectively tested with a novel test-time adaptation method in real time on 1473 OCT volumes from 753 participants with diabetes in a DR screening program in Vietnam. An uncertainty range including dual thresholds was newly introduced to improve the model's trustworthiness by flagging uncertain cases in real-world clinical application.ResultsIn the prospective study in Vietnam, the DL model showed accuracy of 93.70% (95% confidence interval [CI], 91.24 to 94.01%), sensitivity of 91.78% (95% CI, 86.84 to 94.36%), and specificity of 93.06% (95% CI, 91.53 to 94.49%) for detecting the presence of DME, and it showed accuracy of 83.75% (95% CI, 78.17 to 88.83%), sensitivity of 85.61% (95% CI, 79.56 to 91.17%), and specificity of 79.31% (95% CI, 68.75 to 89.09%) for differentiating CI-DME and non-CI DME. In addition, the model identified 64 cases as uncertain, indicating a need for re-evaluation by an ophthalmologist. The DL model and human experts achieved similar performance in identifying DME among individuals with diabetes.ConclusionsOur DL model was effective in detecting DME from three-dimensional OCT scans in a prospective, real-time clinical setting, suggesting that successful deployment of DL to improve DR screening programs in lower- and middle-income countries can be achieved. (Funded by the General Research Fund and others.)

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天发布了新的文献求助10
刚刚
罗诗薇完成签到,获得积分10
刚刚
vicky完成签到,获得积分10
1秒前
shen发布了新的文献求助10
1秒前
zhang给zhang的求助进行了留言
2秒前
2秒前
6秒前
李青松发布了新的文献求助10
7秒前
9秒前
9秒前
11秒前
酷炫的秋凌完成签到 ,获得积分10
12秒前
小张困困完成签到,获得积分10
13秒前
研友_VZG7GZ应助蔚蓝天空采纳,获得10
14秒前
科研通AI2S应助jacob258采纳,获得10
14秒前
hxl给hxl的求助进行了留言
17秒前
samuel完成签到,获得积分10
18秒前
岁岁平安完成签到,获得积分10
19秒前
田様应助文娟Liu采纳,获得10
19秒前
xxw完成签到,获得积分10
20秒前
zrp完成签到,获得积分20
22秒前
初见完成签到 ,获得积分10
22秒前
29秒前
Yziii应助wangqing采纳,获得20
32秒前
vuluv完成签到,获得积分10
32秒前
CipherSage应助嗯嗯采纳,获得10
32秒前
sunshine完成签到 ,获得积分10
33秒前
只如初完成签到,获得积分10
33秒前
聆琳完成签到 ,获得积分10
33秒前
星辰大海应助吃软不吃硬采纳,获得10
33秒前
徐徐图之发布了新的文献求助10
35秒前
36秒前
36秒前
曾经的灵完成签到,获得积分10
36秒前
修仙应助jacob258采纳,获得10
39秒前
铁蛋子给铁蛋子的求助进行了留言
40秒前
青黛发布了新的文献求助10
40秒前
小宋发布了新的文献求助10
40秒前
42秒前
科研通AI2S应助哈哈哈采纳,获得10
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133675
求助须知:如何正确求助?哪些是违规求助? 2784676
关于积分的说明 7768124
捐赠科研通 2439923
什么是DOI,文献DOI怎么找? 1297102
科研通“疑难数据库(出版商)”最低求助积分说明 624868
版权声明 600791