Advancing Diabetic Macular Edema Detection from 3D Optical Coherence Tomography Scans: Integrating Privacy-Preserving AI and Generalizability Techniques — A Prospective Validation in Vietnam

概化理论 光学相干层析成像 糖尿病性黄斑水肿 医学 验光服务 眼科 人工智能 计算机科学 糖尿病性视网膜病变 心理学 糖尿病 发展心理学 内分泌学
作者
Truong Nguyen,Meirui Jiang,Dawei Yang,An Ran Ran,Ziqi Tang,Shuyi Zhang,Xiaoyan Hu,V. Tao Tran,Tran B.L. Dai,Diem T. Le,Nguyen T. Tan,Simon Szeto,Cherie YK Wong,Vivian W.K. Hui,Ken Tsang,Carmen K. M. Chan,Hunter K.L. Yuen,Victor T.T. Chan,Andrew C. Y. Mak,Mary Ho
标识
DOI:10.1056/aioa2400091
摘要

BackgroundDiabetic macular edema (DME) is the primary cause of irreversible vision loss among people with diabetes and can be accurately detected by using optical coherence tomography (OCT). We developed and validated a deep learning (DL) model to classify DME on OCT volumetric scans, enhanced by federated learning and advanced DL methods to safeguard patient privacy and improve model generalizability in analyzing unseen OCT scans. The performance and effectiveness of the DL model were then prospectively evaluated in a real-world diabetic retinopathy (DR) screening program in Vietnam.MethodsWe developed and externally tested a federated learning–based DL algorithm for detecting DME and further classifying center-involved DME (CI-DME) and non-CI-DME through three-dimensional OCT volumetric scans. The study used 8031 OCT volumes from 1958 participants with diabetes from Hong Kong, the United States, and Singapore. This DL model was prospectively tested with a novel test-time adaptation method in real time on 1473 OCT volumes from 753 participants with diabetes in a DR screening program in Vietnam. An uncertainty range including dual thresholds was newly introduced to improve the model's trustworthiness by flagging uncertain cases in real-world clinical application.ResultsIn the prospective study in Vietnam, the DL model showed accuracy of 93.70% (95% confidence interval [CI], 91.24 to 94.01%), sensitivity of 91.78% (95% CI, 86.84 to 94.36%), and specificity of 93.06% (95% CI, 91.53 to 94.49%) for detecting the presence of DME, and it showed accuracy of 83.75% (95% CI, 78.17 to 88.83%), sensitivity of 85.61% (95% CI, 79.56 to 91.17%), and specificity of 79.31% (95% CI, 68.75 to 89.09%) for differentiating CI-DME and non-CI DME. In addition, the model identified 64 cases as uncertain, indicating a need for re-evaluation by an ophthalmologist. The DL model and human experts achieved similar performance in identifying DME among individuals with diabetes.ConclusionsOur DL model was effective in detecting DME from three-dimensional OCT scans in a prospective, real-time clinical setting, suggesting that successful deployment of DL to improve DR screening programs in lower- and middle-income countries can be achieved. (Funded by the General Research Fund and others.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助爱猫的纭采纳,获得10
1秒前
1秒前
wanci应助wl1700采纳,获得10
3秒前
科目三应助沉静草莓采纳,获得10
3秒前
4秒前
4秒前
ding应助rudjs采纳,获得10
4秒前
hao完成签到,获得积分20
5秒前
qian发布了新的文献求助10
6秒前
yag完成签到,获得积分20
7秒前
7秒前
8秒前
daoyi完成签到,获得积分10
9秒前
天天快乐应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
L912294993发布了新的文献求助10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
乐乐应助dahafei采纳,获得10
10秒前
云飞扬应助科研通管家采纳,获得10
10秒前
10秒前
云飞扬应助科研通管家采纳,获得10
10秒前
10秒前
苏苏发布了新的文献求助10
10秒前
HY发布了新的文献求助10
13秒前
苏苏完成签到,获得积分10
15秒前
丸子bop发布了新的文献求助10
16秒前
单纯罡完成签到,获得积分10
16秒前
asd发布了新的文献求助10
19秒前
19秒前
hsy完成签到,获得积分10
20秒前
20秒前
Billy发布了新的文献求助10
21秒前
打打应助鱼鱼采纳,获得20
22秒前
脑洞疼应助wl1700采纳,获得10
22秒前
酷波er应助粥胖胖采纳,获得10
23秒前
hsy发布了新的文献求助20
24秒前
HXB发布了新的文献求助10
24秒前
25秒前
李颖完成签到,获得积分10
26秒前
白色风车发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953182
求助须知:如何正确求助?哪些是违规求助? 3498499
关于积分的说明 11092349
捐赠科研通 3229100
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869286
科研通“疑难数据库(出版商)”最低求助积分说明 801415