Minimizing distance between distribution functions: discrete counterparts to continuous random variables with applications in non-life insurance and stochastic reliability

数学 可靠性(半导体) 随机变量 随机排序 统计 人寿保险 计量经济学 应用数学 精算学 功率(物理) 物理 量子力学 业务
作者
Alessandro Barbiero,Asmerilda Hitaj
出处
期刊:Statistics [Informa]
卷期号:: 1-29
标识
DOI:10.1080/02331888.2024.2396009
摘要

In this work, we propose a novel family of procedures for deriving a discrete counterpart to a continuous probability distribution. They are based on a class of distances between cumulative distribution functions, including the Cramér, the Cramér-von Mises, and the Anderson-Darling distances as particular cases. The discrete counterpart is defined and derived as the random variable which minimizes its distance to the assigned continuous probability distribution among all the discrete random variables supported on the set of integers (or positive integers). Applications are provided with reference to the exponential and the normal distributions, among others; the discrete counterparts are derived, and their main properties are discussed, also in comparison with the one obtained through an existing discretization technique based on the preservation of the cumulative distribution function at integer values. Parameter estimation for these discrete analogs is discussed, along with an analysis of two real datasets, where they are compared in terms of goodness-of-fit with some popular discrete distributions. Furthermore, in order to highlight the effectiveness and the benefits derived from the proposed discretization procedures, we illustrate two practical applications in actuarial science and in reliability engineering. In the former case, the problem of determining the distribution of the total claims amount for a non-life insurance portfolio is considered, where the claim sizes can be modelled as iid random variables, and the number of claims is random as well. Actuaries use a recursive calculation method based on Panjer's formula, which requires an appropriate discretization of the individual claim distribution, and therefore the proposed procedures can be used. Since we consider two simple cases where the distribution of the total claims amount is analytically acquirable, the efficacy of the discretization procedures in the final approximation can be easily assessed and turns out to be satisfactory, especially when compared to the existing discretization. The latter case considers the determination of the reliability parameter for a complex stress-strength model. Here, the approximation by discretization is compared to Monte Carlo simulation and shown to be relevant: with a comparable if not smaller computational effort, discretization leads to similar results as simulation. Such discretizations can also naturally be applied to more complex problems such as scenario generation in stochastic programming. R code for this article is provided as supplementary material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助加减法采纳,获得10
刚刚
1秒前
夏蓉发布了新的文献求助10
1秒前
2秒前
2秒前
充电宝应助神勇的惜文采纳,获得10
2秒前
李剑鸿发布了新的文献求助100
2秒前
消逝发布了新的文献求助10
3秒前
吴未发布了新的文献求助10
4秒前
4秒前
GAO发布了新的文献求助10
4秒前
4秒前
科研通AI5应助直率的宛海采纳,获得10
5秒前
5秒前
5秒前
Zhouzhou发布了新的文献求助10
6秒前
天下无敌丑娃娃完成签到,获得积分10
7秒前
xing完成签到,获得积分10
7秒前
完美世界应助健壮的惠采纳,获得10
7秒前
FJY完成签到,获得积分10
7秒前
孤独的金针菇完成签到,获得积分10
8秒前
8秒前
9秒前
jane发布了新的文献求助10
10秒前
10秒前
kingwill发布了新的文献求助30
10秒前
充电宝应助wdyi701采纳,获得10
10秒前
科研通AI5应助guard采纳,获得10
12秒前
完美世界应助xing采纳,获得10
13秒前
13秒前
ximei发布了新的文献求助10
13秒前
13秒前
SciGPT应助酷酷念波采纳,获得10
15秒前
16秒前
16秒前
17秒前
weirdo发布了新的文献求助10
17秒前
Lily发布了新的文献求助10
18秒前
852应助幽月采纳,获得10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555076
求助须知:如何正确求助?哪些是违规求助? 3130818
关于积分的说明 9388790
捐赠科研通 2830291
什么是DOI,文献DOI怎么找? 1555914
邀请新用户注册赠送积分活动 726331
科研通“疑难数据库(出版商)”最低求助积分说明 715716