Mapping Knowledge Landscapes and Emerging Trends in AI for Dementia Biomarkers: Bibliometric and Visualization Analysis

痴呆 数据科学 领域(数学) 生物标志物 生物标志物发现 医学 计算机科学 病理 疾病 生物 蛋白质组学 生物化学 数学 基因 纯数学
作者
Wenhao Qi,Xiaohong Zhu,Danni He,Bin Wang,Shihua Cao,Chaoqun Dong,Yunhua Li,Yanfei Chen,Bingsheng Wang,Yankai Shi,Guowei Jiang,Fang Liu,Lizzy Boots,Jiaqi Li,Xiajing Lou,Jiani Yao,Xiaodong Lü,J Kang
出处
期刊:Journal of Medical Internet Research 卷期号:26: e57830-e57830
标识
DOI:10.2196/57830
摘要

Background With the rise of artificial intelligence (AI) in the field of dementia biomarker research, exploring its current developmental trends and research focuses has become increasingly important. This study, using literature data mining, analyzes and assesses the key contributions and development scale of AI in dementia biomarker research. Objective The aim of this study was to comprehensively evaluate the current state, hot topics, and future trends of AI in dementia biomarker research globally. Methods This study thoroughly analyzed the literature in the application of AI to dementia biomarkers across various dimensions, such as publication volume, authors, institutions, journals, and countries, based on the Web of Science Core Collection. In addition, scales, trends, and potential connections between AI and biomarkers were extracted and deeply analyzed through multiple expert panels. Results To date, the field includes 1070 publications across 362 journals, involving 74 countries and 1793 major research institutions, with a total of 6455 researchers. Notably, 69.41% (994/1432) of the researchers ceased their studies before 2019. The most prevalent algorithms used are support vector machines, random forests, and neural networks. Current research frequently focuses on biomarkers such as imaging biomarkers, cerebrospinal fluid biomarkers, genetic biomarkers, and blood biomarkers. Recent advances have highlighted significant discoveries in biomarkers related to imaging, genetics, and blood, with growth in studies on digital and ophthalmic biomarkers. Conclusions The field is currently in a phase of stable development, receiving widespread attention from numerous countries, institutions, and researchers worldwide. Despite this, stable clusters of collaborative research have yet to be established, and there is a pressing need to enhance interdisciplinary collaboration. Algorithm development has shown prominence, especially the application of support vector machines and neural networks in imaging studies. Looking forward, newly discovered biomarkers are expected to undergo further validation, and new types, such as digital biomarkers, will garner increased research interest and attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
1751587229发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
方越应助七个歪采纳,获得10
4秒前
5秒前
6秒前
香蕉觅云应助天真访天采纳,获得10
6秒前
罗明明完成签到 ,获得积分10
6秒前
一颗小纽扣完成签到,获得积分10
6秒前
123发布了新的文献求助10
7秒前
NexusExplorer应助飞飞飞采纳,获得10
7秒前
情怀应助222采纳,获得10
7秒前
安白发布了新的文献求助10
8秒前
悦悦完成签到 ,获得积分10
8秒前
1751587229完成签到,获得积分10
8秒前
傢誠发布了新的文献求助10
8秒前
fanmo完成签到 ,获得积分0
9秒前
9秒前
文文发布了新的文献求助10
9秒前
violet_119完成签到,获得积分10
9秒前
9秒前
benbenca发布了新的文献求助20
9秒前
9秒前
爆米花应助hl采纳,获得10
10秒前
11秒前
三太子发布了新的文献求助10
12秒前
12秒前
13秒前
李健应助ccerr采纳,获得10
13秒前
不再选择发布了新的文献求助10
16秒前
silvia-z发布了新的文献求助10
17秒前
cctv18应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
cctv18应助科研通管家采纳,获得10
18秒前
cctv18应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
19秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330005
求助须知:如何正确求助?哪些是违规求助? 2959617
关于积分的说明 8596037
捐赠科研通 2637980
什么是DOI,文献DOI怎么找? 1444063
科研通“疑难数据库(出版商)”最低求助积分说明 668931
邀请新用户注册赠送积分活动 656507