Multi-omics features of immunogenic cell death in gastric cancer identified by combining single-cell sequencing analysis and machine learning

计算生物学 癌症 计算机科学 细胞 生物信息学 生物 遗传学
作者
Shu-Long Dai,Jian-Qiang Pan,Zhen-Rong Su
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-73071-x
摘要

Gastric cancer (GC) is a prevalent malignancy with high mortality rates. Immunogenic cell death (ICD) is a unique form of programmed cell death that is closely linked to antitumor immunity and plays a critical role in modulating the tumor microenvironment (TME). Nevertheless, elucidating the precise effect of ICD on GC remains a challenging endeavour. ICD-related genes were identified in single-cell sequencing datasets and bulk transcriptome sequencing datasets via the AddModuleScore function, weighted gene co-expression network (WGCNA), and differential expression analysis. A robust signature associated with ICD was constructed using a machine learning computational framework incorporating 101 algorithms. Furthermore, multiomics analysis, including single-cell sequencing analysis, bulk transcriptomic analysis, and proteomics analysis, was conducted to verify the correlation of these hub genes with the immune microenvironment features of GC and with GC invasion and metastasis. We screened 59 genes associated with ICD and developed a robust ICD-related gene signature (ICDRS) via a machine learning computational framework that integrates 101 different algorithms. Furthermore, we identified five key hub genes (SMAP2, TNFAIP8, LBH, TXNIP, and PIK3IP1) from the ICDRS. Through single-cell analysis of GC tumor s, we confirmed the strong correlations of the hub genes with immune microenvironment features. Among these five genes, LBH exhibited the most significant associations with a poor prognosis and with the invasion and metastasis of GC. Finally, our findings were validated through immunohistochemical staining of a large clinical sample set, and the results further supported that LBH promotes GC cell invasion by activating the epithelial-mesenchymal transition (EMT) pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
。。发布了新的文献求助10
2秒前
2秒前
dududu完成签到,获得积分20
3秒前
Dr.miao完成签到,获得积分10
5秒前
zkwabm发布了新的文献求助10
6秒前
ZhaoPeng完成签到,获得积分10
6秒前
Jasper应助dududu采纳,获得10
7秒前
7秒前
7秒前
7秒前
去微软发布了新的文献求助10
7秒前
Lucas应助咕咕咕采纳,获得10
8秒前
13秒前
QXR发布了新的文献求助10
14秒前
充电宝应助顾家老攻采纳,获得10
14秒前
骆子军发布了新的文献求助10
14秒前
itsserene应助平常映雁采纳,获得60
15秒前
一期一会完成签到,获得积分10
15秒前
葵魁完成签到,获得积分10
15秒前
轻松向彤发布了新的文献求助10
15秒前
金平卢仙发布了新的文献求助10
15秒前
简单问儿完成签到 ,获得积分10
15秒前
woollen2022完成签到,获得积分10
16秒前
雪雨夜心完成签到,获得积分10
19秒前
少女没有心完成签到 ,获得积分10
20秒前
wanci应助asd采纳,获得10
21秒前
老肖应助婷婷采纳,获得10
21秒前
23秒前
大个应助瑶瑶采纳,获得10
25秒前
沐沐完成签到,获得积分10
25秒前
27秒前
小吴同学发布了新的文献求助10
27秒前
浪浪浪完成签到 ,获得积分10
27秒前
傅觉然完成签到,获得积分10
28秒前
菜小芽发布了新的文献求助10
28秒前
萌新完成签到,获得积分10
30秒前
jcae123发布了新的文献求助10
31秒前
大模型应助富强民主采纳,获得10
31秒前
zpz完成签到,获得积分10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140831
求助须知:如何正确求助?哪些是违规求助? 2791790
关于积分的说明 7800310
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302350
科研通“疑难数据库(出版商)”最低求助积分说明 626516
版权声明 601210