亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-Policy vs. Off-Policy Reinforcement Learning for Multi-Domain SFC Embedding in SDN/NFV-Enabled Networks

计算机科学 强化学习 马尔可夫决策过程 启发式 服务质量 分布式计算 马尔可夫过程 人工智能 计算机网络 数学 统计
作者
Donghao Zhao,Weisong Shi,Yu Lü,Xi Li,Yicen Liu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 123049-123070
标识
DOI:10.1109/access.2024.3430865
摘要

In the software defined network (SDN)/network function virtualization (NFV)-enabled networks, service function chains (SFCs) should typically be allocated to deploy these services, which not only entails meeting the service's Quality of Service (QoS) requirements, but also considering the infrastructure's limitations. Although this issue has received much attention in the literature, the dynamics, intricacy, complexity and unpredictability of the issue provide several difficulties for researchers and engineers. The traditional methods (e.g., exact, heuristic, meta-heuristic, and game, etc.) are subjected to the complexity of multi-domain cloud network scenarios with dynamic network states, high-speed computational requirements, and enormous service requests. Recent studies have shown that reinforcement learning (RL) is a promising way to deal with the limitations of the traditional methods. On-policy and off-policy are two key categories in the field of RL models, and they both have promising advantages in deal with dynamic resource allocation problems. This paper contains two innovative points at two levels. Firstly, in order to deal with SFC embedding problem in dynamic multi-domain networks, a mixed Markov model combining Markov decision process (MDP) and hidden Markov model (HMM) is constructed, and the corresponding RL model-solving algorithms are proposed. Secondly, in order to distinguish the appropriate model in a given network scenario, the on-policy RL based multiple domain SFC embedding algorithm is compared with the off-policy one. The obtained simulation results show that the proposed RL algorithms can outperform the current baselines in terms of delay, load balancing and response time. Furthermore, we also point out that the off-policy based algorithm is more suitable for small-scale dynamic network scenarios, while the on-policy based algorithm is more suitable for medium to large-scale network scenarios with high convergence requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助yyh采纳,获得10
6秒前
17秒前
18秒前
培培完成签到 ,获得积分10
19秒前
yyh发布了新的文献求助10
22秒前
聪明的黑猫完成签到 ,获得积分10
28秒前
39秒前
1分钟前
1分钟前
早日发文章完成签到,获得积分10
1分钟前
1分钟前
顏泰楊完成签到,获得积分10
1分钟前
1分钟前
Tales完成签到 ,获得积分10
2分钟前
OhHH完成签到 ,获得积分10
2分钟前
2分钟前
不萌不zs发布了新的文献求助10
2分钟前
VDC应助科研通管家采纳,获得30
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
fairy完成签到 ,获得积分10
3分钟前
3分钟前
在水一方应助单纯的映真采纳,获得10
3分钟前
脑洞疼应助研友_R2D2采纳,获得10
4分钟前
4分钟前
欣欣完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
研友_R2D2发布了新的文献求助10
4分钟前
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
鱿鱼起司发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389068
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472848
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553