On-Policy vs. Off-Policy Reinforcement Learning for Multi-Domain SFC Embedding in SDN/NFV-Enabled Networks

计算机科学 强化学习 马尔可夫决策过程 启发式 服务质量 分布式计算 马尔可夫过程 人工智能 计算机网络 数学 统计
作者
Donghao Zhao,Weisong Shi,Yu Lü,Xi Li,Yicen Liu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 123049-123070
标识
DOI:10.1109/access.2024.3430865
摘要

In the software defined network (SDN)/network function virtualization (NFV)-enabled networks, service function chains (SFCs) should typically be allocated to deploy these services, which not only entails meeting the service's Quality of Service (QoS) requirements, but also considering the infrastructure's limitations. Although this issue has received much attention in the literature, the dynamics, intricacy, complexity and unpredictability of the issue provide several difficulties for researchers and engineers. The traditional methods (e.g., exact, heuristic, meta-heuristic, and game, etc.) are subjected to the complexity of multi-domain cloud network scenarios with dynamic network states, high-speed computational requirements, and enormous service requests. Recent studies have shown that reinforcement learning (RL) is a promising way to deal with the limitations of the traditional methods. On-policy and off-policy are two key categories in the field of RL models, and they both have promising advantages in deal with dynamic resource allocation problems. This paper contains two innovative points at two levels. Firstly, in order to deal with SFC embedding problem in dynamic multi-domain networks, a mixed Markov model combining Markov decision process (MDP) and hidden Markov model (HMM) is constructed, and the corresponding RL model-solving algorithms are proposed. Secondly, in order to distinguish the appropriate model in a given network scenario, the on-policy RL based multiple domain SFC embedding algorithm is compared with the off-policy one. The obtained simulation results show that the proposed RL algorithms can outperform the current baselines in terms of delay, load balancing and response time. Furthermore, we also point out that the off-policy based algorithm is more suitable for small-scale dynamic network scenarios, while the on-policy based algorithm is more suitable for medium to large-scale network scenarios with high convergence requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月光疾风发布了新的文献求助10
2秒前
坚强的靖柔完成签到,获得积分10
2秒前
小刀yeye发布了新的文献求助10
3秒前
4秒前
浩气长存完成签到 ,获得积分10
4秒前
香蕉觅云应助贤惠的如松采纳,获得10
4秒前
君衡完成签到 ,获得积分10
5秒前
6秒前
7秒前
怡然的雪柳完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
大刀王五完成签到,获得积分20
9秒前
New完成签到,获得积分10
9秒前
ding应助SOESAN采纳,获得10
9秒前
9秒前
10秒前
小溶氧完成签到,获得积分10
10秒前
科研通AI5应助小小采纳,获得10
10秒前
CipherSage应助小小采纳,获得10
10秒前
dew发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助20
11秒前
zhou默发布了新的文献求助10
11秒前
六根清净完成签到,获得积分20
12秒前
坦率的平安完成签到,获得积分10
13秒前
13秒前
发呆小蜗完成签到,获得积分10
14秒前
Redinn发布了新的文献求助10
15秒前
大刀王五发布了新的文献求助10
15秒前
白薇完成签到 ,获得积分10
16秒前
16秒前
alexsoong完成签到,获得积分10
17秒前
李健应助风趣采白采纳,获得10
17秒前
DijiaXu应助发呆小蜗采纳,获得20
17秒前
AaronL完成签到,获得积分10
18秒前
表哥yd完成签到 ,获得积分10
19秒前
20秒前
OsHTAS发布了新的文献求助20
20秒前
一号小玩家完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070341
求助须知:如何正确求助?哪些是违规求助? 4291451
关于积分的说明 13370479
捐赠科研通 4111769
什么是DOI,文献DOI怎么找? 2251670
邀请新用户注册赠送积分活动 1256789
关于科研通互助平台的介绍 1189429