On-Policy vs. Off-Policy Reinforcement Learning for Multi-Domain SFC Embedding in SDN/NFV-Enabled Networks

计算机科学 强化学习 马尔可夫决策过程 启发式 服务质量 分布式计算 马尔可夫过程 人工智能 计算机网络 数学 统计
作者
Donghao Zhao,Weisong Shi,Yu Lü,Xi Li,Yicen Liu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 123049-123070
标识
DOI:10.1109/access.2024.3430865
摘要

In the software defined network (SDN)/network function virtualization (NFV)-enabled networks, service function chains (SFCs) should typically be allocated to deploy these services, which not only entails meeting the service's Quality of Service (QoS) requirements, but also considering the infrastructure's limitations. Although this issue has received much attention in the literature, the dynamics, intricacy, complexity and unpredictability of the issue provide several difficulties for researchers and engineers. The traditional methods (e.g., exact, heuristic, meta-heuristic, and game, etc.) are subjected to the complexity of multi-domain cloud network scenarios with dynamic network states, high-speed computational requirements, and enormous service requests. Recent studies have shown that reinforcement learning (RL) is a promising way to deal with the limitations of the traditional methods. On-policy and off-policy are two key categories in the field of RL models, and they both have promising advantages in deal with dynamic resource allocation problems. This paper contains two innovative points at two levels. Firstly, in order to deal with SFC embedding problem in dynamic multi-domain networks, a mixed Markov model combining Markov decision process (MDP) and hidden Markov model (HMM) is constructed, and the corresponding RL model-solving algorithms are proposed. Secondly, in order to distinguish the appropriate model in a given network scenario, the on-policy RL based multiple domain SFC embedding algorithm is compared with the off-policy one. The obtained simulation results show that the proposed RL algorithms can outperform the current baselines in terms of delay, load balancing and response time. Furthermore, we also point out that the off-policy based algorithm is more suitable for small-scale dynamic network scenarios, while the on-policy based algorithm is more suitable for medium to large-scale network scenarios with high convergence requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静水流深发布了新的文献求助10
刚刚
刚刚
娃哈哈发布了新的文献求助10
刚刚
鲁路修完成签到,获得积分10
2秒前
Zq完成签到,获得积分10
2秒前
耍酷问兰完成签到,获得积分10
3秒前
3秒前
tenacity完成签到,获得积分10
5秒前
香蕉觅云应助神华采纳,获得10
5秒前
5秒前
温柔以冬发布了新的文献求助10
5秒前
未央发布了新的文献求助30
5秒前
周凡淇发布了新的文献求助10
7秒前
8秒前
援兮发布了新的文献求助10
8秒前
8秒前
充电宝应助jitianxing采纳,获得10
9秒前
呆萌幻竹发布了新的文献求助10
10秒前
kiki发布了新的文献求助10
10秒前
光撒盐完成签到,获得积分10
11秒前
Foch发布了新的文献求助10
11秒前
天天快乐应助美味的薯片采纳,获得10
11秒前
念心发布了新的文献求助10
12秒前
13秒前
寻悦发布了新的文献求助10
13秒前
xiaojian_291发布了新的文献求助10
13秒前
14秒前
孟长歌完成签到,获得积分10
14秒前
15秒前
15秒前
英勇语山发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
周凡淇发布了新的文献求助10
18秒前
舒适的石头完成签到 ,获得积分10
18秒前
18秒前
Mini33发布了新的文献求助50
19秒前
19秒前
wyp发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070