Improved method for cropland extraction of seasonal crops from multi-sensor satellite data

卫星 环境科学 遥感 萃取(化学) 地理 色谱法 工程类 航空航天工程 化学
作者
Danish Raza,Hong Shu,Majid Nazeer,Hasnat Aslam,Sahar Mirza,Xiongwu Xiao,Azeem Sardar,Hafsa Aeman
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (18): 6249-6284
标识
DOI:10.1080/01431161.2024.2388864
摘要

Monitoring agricultural land over vast geographical areas presents challenges due to the absence of accurate, comprehensive and precise data, which has become a complex process that is difficult to do in terms of both timespans and consistency. Hence, this study presents an improved approach for the identification of agricultural land by utilizing the capabilities of Sentinel-1 and Sentinel-2 satellites with a variety of vegetation and non-vegetation indices and machine learning algorithms. The Multispectral Correlation Mapper (MCM) and Random Forest (RF) algorithms are adopted to train different agricultural lands, crop types and sowing and cultivation seasons. The 45-bands mega-file data cube (MFDC) fusion for each season incorporates essential indices and features derived from the Sentinel-1 and Sentinel-2 datasets for both seasons, i.e. Rabi (winter-spring season) and Kharif (summer-autumn season). The proposed method demonstrated resilience when applied to satellite datasets while effectively reducing the impact of non-agricultural elements such as shrubs, grass, bare soil and orchards. The results demonstrate a notable ability to differentiate between the Rabi and Kharif seasons, resulting in a high level of precision in measuring the extent of cultivated land during the Rabi and Kharif seasons with an area of 626,947 acres and 590,858 acres, respectively. The total land area, ascertained from the observation of the comprehensive cropping pattern and agricultural modifications during the entire year (June 2021–May 2022) is 635,655 acres. The validation exercise shows the higher accuracy of this method for cropland, with an overall accuracy of 98.8%, kappa of 0.97, user accuracy of 98.69% and producer accuracy of 99.13%. Additionally, it was spatially compared with the ESRI, ESA and MODIS cropland layers and government statistical data. Furthermore, the research investigates the temporal dynamics of agricultural growth phases using spectral bands and indices. This approach improves the accuracy of precise cropland identification and provides useful insights into crop phenology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助清脆的书桃采纳,获得10
1秒前
平安顺遂发布了新的文献求助50
1秒前
1秒前
ljj发布了新的文献求助10
2秒前
愉快之槐发布了新的文献求助200
2秒前
guozizi发布了新的文献求助10
2秒前
苹果发布了新的文献求助10
2秒前
3秒前
ayeben完成签到,获得积分10
3秒前
朴实寻真发布了新的文献求助10
3秒前
tingting关注了科研通微信公众号
3秒前
汉堡国王完成签到,获得积分10
4秒前
4秒前
chercher完成签到,获得积分10
5秒前
kai发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
yuhongsun完成签到,获得积分10
8秒前
重要寒珊发布了新的文献求助10
9秒前
9秒前
10秒前
研友_VZG7GZ应助科研圣体采纳,获得10
11秒前
11秒前
yuhongsun发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
星辰愿发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
慕青应助奥特曼采纳,获得10
14秒前
14秒前
所所应助傻傻的语蕊采纳,获得10
14秒前
darcy发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
674发布了新的文献求助10
16秒前
你hao完成签到,获得积分10
17秒前
wanci应助优雅沛文采纳,获得10
18秒前
随缘发布了新的文献求助10
18秒前
Seek发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729907
求助须知:如何正确求助?哪些是违规求助? 5320921
关于积分的说明 15317727
捐赠科研通 4876709
什么是DOI,文献DOI怎么找? 2619565
邀请新用户注册赠送积分活动 1569026
关于科研通互助平台的介绍 1525640