Improved method for cropland extraction of seasonal crops from multi-sensor satellite data

卫星 环境科学 遥感 萃取(化学) 地理 色谱法 工程类 航空航天工程 化学
作者
Danish Raza,Hong Shu,Majid Nazeer,Hasnat Aslam,Sahar Mirza,Xiongwu Xiao,Azeem Sardar,Hafsa Aeman
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (18): 6249-6284
标识
DOI:10.1080/01431161.2024.2388864
摘要

Monitoring agricultural land over vast geographical areas presents challenges due to the absence of accurate, comprehensive and precise data, which has become a complex process that is difficult to do in terms of both timespans and consistency. Hence, this study presents an improved approach for the identification of agricultural land by utilizing the capabilities of Sentinel-1 and Sentinel-2 satellites with a variety of vegetation and non-vegetation indices and machine learning algorithms. The Multispectral Correlation Mapper (MCM) and Random Forest (RF) algorithms are adopted to train different agricultural lands, crop types and sowing and cultivation seasons. The 45-bands mega-file data cube (MFDC) fusion for each season incorporates essential indices and features derived from the Sentinel-1 and Sentinel-2 datasets for both seasons, i.e. Rabi (winter-spring season) and Kharif (summer-autumn season). The proposed method demonstrated resilience when applied to satellite datasets while effectively reducing the impact of non-agricultural elements such as shrubs, grass, bare soil and orchards. The results demonstrate a notable ability to differentiate between the Rabi and Kharif seasons, resulting in a high level of precision in measuring the extent of cultivated land during the Rabi and Kharif seasons with an area of 626,947 acres and 590,858 acres, respectively. The total land area, ascertained from the observation of the comprehensive cropping pattern and agricultural modifications during the entire year (June 2021–May 2022) is 635,655 acres. The validation exercise shows the higher accuracy of this method for cropland, with an overall accuracy of 98.8%, kappa of 0.97, user accuracy of 98.69% and producer accuracy of 99.13%. Additionally, it was spatially compared with the ESRI, ESA and MODIS cropland layers and government statistical data. Furthermore, the research investigates the temporal dynamics of agricultural growth phases using spectral bands and indices. This approach improves the accuracy of precise cropland identification and provides useful insights into crop phenology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助自信不言采纳,获得10
1秒前
2秒前
2秒前
SciGPT应助研友_nEoMy8采纳,获得10
2秒前
五花肉发布了新的文献求助10
3秒前
Sven_M完成签到,获得积分10
3秒前
3秒前
洛尚发布了新的文献求助10
4秒前
4秒前
4秒前
1111完成签到,获得积分20
4秒前
5秒前
hulahula完成签到,获得积分20
5秒前
科研通AI6应助摇光采纳,获得10
5秒前
6秒前
wangdao完成签到,获得积分10
6秒前
科研通AI6应助机智的明雪采纳,获得10
6秒前
闪闪的熠彤完成签到,获得积分10
6秒前
7秒前
遇上就这样吧应助zxy采纳,获得20
8秒前
8秒前
hulahula发布了新的文献求助10
8秒前
领导范儿应助qiny采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
追梦人完成签到 ,获得积分10
10秒前
五花肉完成签到,获得积分10
10秒前
10秒前
高贵从蕾完成签到,获得积分20
11秒前
Richard发布了新的文献求助10
11秒前
细心蚂蚁发布了新的文献求助10
11秒前
完美世界应助洛尚采纳,获得10
11秒前
乐乐应助Sunny采纳,获得10
11秒前
文静的行恶完成签到,获得积分10
12秒前
枯叶灬风发布了新的文献求助10
13秒前
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443003
求助须知:如何正确求助?哪些是违规求助? 4552969
关于积分的说明 14240171
捐赠科研通 4474475
什么是DOI,文献DOI怎么找? 2452007
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418675