Improved method for cropland extraction of seasonal crops from multi-sensor satellite data

卫星 环境科学 遥感 萃取(化学) 地理 色谱法 工程类 航空航天工程 化学
作者
Danish Raza,Hong Shu,Majid Nazeer,Hasnat Aslam,Sahar Mirza,Xiongwu Xiao,Azeem Sardar,Hafsa Aeman
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (18): 6249-6284
标识
DOI:10.1080/01431161.2024.2388864
摘要

Monitoring agricultural land over vast geographical areas presents challenges due to the absence of accurate, comprehensive and precise data, which has become a complex process that is difficult to do in terms of both timespans and consistency. Hence, this study presents an improved approach for the identification of agricultural land by utilizing the capabilities of Sentinel-1 and Sentinel-2 satellites with a variety of vegetation and non-vegetation indices and machine learning algorithms. The Multispectral Correlation Mapper (MCM) and Random Forest (RF) algorithms are adopted to train different agricultural lands, crop types and sowing and cultivation seasons. The 45-bands mega-file data cube (MFDC) fusion for each season incorporates essential indices and features derived from the Sentinel-1 and Sentinel-2 datasets for both seasons, i.e. Rabi (winter-spring season) and Kharif (summer-autumn season). The proposed method demonstrated resilience when applied to satellite datasets while effectively reducing the impact of non-agricultural elements such as shrubs, grass, bare soil and orchards. The results demonstrate a notable ability to differentiate between the Rabi and Kharif seasons, resulting in a high level of precision in measuring the extent of cultivated land during the Rabi and Kharif seasons with an area of 626,947 acres and 590,858 acres, respectively. The total land area, ascertained from the observation of the comprehensive cropping pattern and agricultural modifications during the entire year (June 2021–May 2022) is 635,655 acres. The validation exercise shows the higher accuracy of this method for cropland, with an overall accuracy of 98.8%, kappa of 0.97, user accuracy of 98.69% and producer accuracy of 99.13%. Additionally, it was spatially compared with the ESRI, ESA and MODIS cropland layers and government statistical data. Furthermore, the research investigates the temporal dynamics of agricultural growth phases using spectral bands and indices. This approach improves the accuracy of precise cropland identification and provides useful insights into crop phenology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
顾矜应助冰橙咖啡采纳,获得50
1秒前
不安的牛排完成签到,获得积分20
3秒前
上官若男应助tigerli采纳,获得10
3秒前
慕文颜雨发布了新的文献求助10
4秒前
专注妙松发布了新的文献求助10
4秒前
4秒前
4秒前
羫孔完成签到,获得积分10
5秒前
CCDR发布了新的文献求助10
5秒前
徐doc发布了新的文献求助30
5秒前
feifei发布了新的文献求助10
6秒前
小蘑菇应助静静采纳,获得30
8秒前
量子星尘发布了新的文献求助10
8秒前
搜集达人应助不安的牛排采纳,获得10
8秒前
9秒前
11秒前
11秒前
12秒前
SJY发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
bow完成签到 ,获得积分10
15秒前
叮当完成签到 ,获得积分10
16秒前
qwer1234发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
18秒前
smottom应助tigerli采纳,获得10
18秒前
18秒前
科研通AI6.1应助徐doc采纳,获得10
20秒前
韩达大发布了新的文献求助10
20秒前
wanci应助梁锦澎采纳,获得10
21秒前
QT_429发布了新的文献求助10
22秒前
波波发布了新的文献求助10
23秒前
23秒前
慕青应助ltttaaaa采纳,获得10
23秒前
shi hui发布了新的文献求助10
23秒前
静静发布了新的文献求助30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762881
求助须知:如何正确求助?哪些是违规求助? 5537393
关于积分的说明 15403910
捐赠科研通 4898922
什么是DOI,文献DOI怎么找? 2635190
邀请新用户注册赠送积分活动 1583298
关于科研通互助平台的介绍 1538405