Improved method for cropland extraction of seasonal crops from multi-sensor satellite data

卫星 环境科学 遥感 萃取(化学) 地理 色谱法 工程类 航空航天工程 化学
作者
Danish Raza,Hong Shu,Majid Nazeer,Hasnat Aslam,Sahar Mirza,Xiongwu Xiao,Azeem Sardar,Hafsa Aeman
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (18): 6249-6284
标识
DOI:10.1080/01431161.2024.2388864
摘要

Monitoring agricultural land over vast geographical areas presents challenges due to the absence of accurate, comprehensive and precise data, which has become a complex process that is difficult to do in terms of both timespans and consistency. Hence, this study presents an improved approach for the identification of agricultural land by utilizing the capabilities of Sentinel-1 and Sentinel-2 satellites with a variety of vegetation and non-vegetation indices and machine learning algorithms. The Multispectral Correlation Mapper (MCM) and Random Forest (RF) algorithms are adopted to train different agricultural lands, crop types and sowing and cultivation seasons. The 45-bands mega-file data cube (MFDC) fusion for each season incorporates essential indices and features derived from the Sentinel-1 and Sentinel-2 datasets for both seasons, i.e. Rabi (winter-spring season) and Kharif (summer-autumn season). The proposed method demonstrated resilience when applied to satellite datasets while effectively reducing the impact of non-agricultural elements such as shrubs, grass, bare soil and orchards. The results demonstrate a notable ability to differentiate between the Rabi and Kharif seasons, resulting in a high level of precision in measuring the extent of cultivated land during the Rabi and Kharif seasons with an area of 626,947 acres and 590,858 acres, respectively. The total land area, ascertained from the observation of the comprehensive cropping pattern and agricultural modifications during the entire year (June 2021–May 2022) is 635,655 acres. The validation exercise shows the higher accuracy of this method for cropland, with an overall accuracy of 98.8%, kappa of 0.97, user accuracy of 98.69% and producer accuracy of 99.13%. Additionally, it was spatially compared with the ESRI, ESA and MODIS cropland layers and government statistical data. Furthermore, the research investigates the temporal dynamics of agricultural growth phases using spectral bands and indices. This approach improves the accuracy of precise cropland identification and provides useful insights into crop phenology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一进实验室就犯困完成签到,获得积分10
1秒前
1秒前
阿宝完成签到,获得积分0
2秒前
小熊完成签到,获得积分10
3秒前
hdx完成签到 ,获得积分10
3秒前
矮小的笑槐完成签到,获得积分10
4秒前
yueqin完成签到,获得积分10
5秒前
Ehgnix完成签到,获得积分10
5秒前
如果完成签到,获得积分10
5秒前
yoyo完成签到 ,获得积分10
7秒前
Morri完成签到,获得积分10
7秒前
恰恰发布了新的文献求助10
8秒前
旺旺碎冰冰完成签到,获得积分10
8秒前
我睡觉的时候不困完成签到 ,获得积分10
9秒前
501小队完成签到,获得积分10
9秒前
WANGs完成签到,获得积分10
10秒前
12秒前
无事小神仙完成签到,获得积分10
12秒前
Cooby完成签到,获得积分10
13秒前
huco完成签到,获得积分10
13秒前
13秒前
kin完成签到,获得积分10
13秒前
马华化完成签到,获得积分10
13秒前
小西瓜完成签到,获得积分20
13秒前
与一完成签到 ,获得积分10
13秒前
lucky完成签到,获得积分10
14秒前
14秒前
爆米花应助长安采纳,获得10
15秒前
李健的小迷弟应助Alive采纳,获得10
15秒前
16秒前
自然芹发布了新的文献求助10
17秒前
18秒前
缓慢的冬云完成签到,获得积分10
18秒前
Edgar完成签到,获得积分10
18秒前
迷路的映雁完成签到 ,获得积分10
18秒前
19秒前
xiaoGuo完成签到,获得积分10
19秒前
19秒前
拓跋傲薇完成签到,获得积分10
19秒前
destiny完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158693
求助须知:如何正确求助?哪些是违规求助? 2809927
关于积分的说明 7884596
捐赠科研通 2468681
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012