Improved method for cropland extraction of seasonal crops from multi-sensor satellite data

卫星 环境科学 遥感 萃取(化学) 地理 色谱法 工程类 航空航天工程 化学
作者
Danish Raza,Hong Shu,Majid Nazeer,Hasnat Aslam,Sahar Mirza,Xiongwu Xiao,Azeem Sardar,Hafsa Aeman
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (18): 6249-6284
标识
DOI:10.1080/01431161.2024.2388864
摘要

Monitoring agricultural land over vast geographical areas presents challenges due to the absence of accurate, comprehensive and precise data, which has become a complex process that is difficult to do in terms of both timespans and consistency. Hence, this study presents an improved approach for the identification of agricultural land by utilizing the capabilities of Sentinel-1 and Sentinel-2 satellites with a variety of vegetation and non-vegetation indices and machine learning algorithms. The Multispectral Correlation Mapper (MCM) and Random Forest (RF) algorithms are adopted to train different agricultural lands, crop types and sowing and cultivation seasons. The 45-bands mega-file data cube (MFDC) fusion for each season incorporates essential indices and features derived from the Sentinel-1 and Sentinel-2 datasets for both seasons, i.e. Rabi (winter-spring season) and Kharif (summer-autumn season). The proposed method demonstrated resilience when applied to satellite datasets while effectively reducing the impact of non-agricultural elements such as shrubs, grass, bare soil and orchards. The results demonstrate a notable ability to differentiate between the Rabi and Kharif seasons, resulting in a high level of precision in measuring the extent of cultivated land during the Rabi and Kharif seasons with an area of 626,947 acres and 590,858 acres, respectively. The total land area, ascertained from the observation of the comprehensive cropping pattern and agricultural modifications during the entire year (June 2021–May 2022) is 635,655 acres. The validation exercise shows the higher accuracy of this method for cropland, with an overall accuracy of 98.8%, kappa of 0.97, user accuracy of 98.69% and producer accuracy of 99.13%. Additionally, it was spatially compared with the ESRI, ESA and MODIS cropland layers and government statistical data. Furthermore, the research investigates the temporal dynamics of agricultural growth phases using spectral bands and indices. This approach improves the accuracy of precise cropland identification and provides useful insights into crop phenology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
limz完成签到,获得积分10
刚刚
想吃见手青完成签到 ,获得积分10
刚刚
李一琳完成签到,获得积分10
刚刚
rong发布了新的文献求助10
刚刚
SUKAILIMAI完成签到,获得积分10
刚刚
刚刚
Jasmine完成签到,获得积分10
1秒前
1秒前
1秒前
小小佳同学完成签到 ,获得积分10
2秒前
外向的南烟完成签到,获得积分10
2秒前
王者归来发布了新的文献求助10
2秒前
科研小天才完成签到,获得积分10
2秒前
Miya_han完成签到,获得积分10
2秒前
3秒前
求助哥完成签到,获得积分10
3秒前
阔达的背包完成签到 ,获得积分10
4秒前
善良的豆芽完成签到,获得积分10
4秒前
Yuksn完成签到,获得积分10
5秒前
东风发布了新的文献求助10
5秒前
阿尼发布了新的文献求助10
5秒前
han完成签到,获得积分10
5秒前
月yue完成签到,获得积分10
5秒前
5秒前
大白完成签到,获得积分10
6秒前
6秒前
飞翔的鸣完成签到,获得积分0
6秒前
绝世容颜给绝世容颜的求助进行了留言
7秒前
刘冰芸完成签到,获得积分10
8秒前
怕孤独的鸵鸟完成签到,获得积分10
8秒前
XF完成签到,获得积分10
9秒前
vvvvvv完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
李查查完成签到 ,获得积分10
9秒前
王者归来完成签到,获得积分10
10秒前
jx完成签到 ,获得积分10
10秒前
Hello应助x111采纳,获得10
11秒前
朱先生完成签到 ,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658690
求助须知:如何正确求助?哪些是违规求助? 4823706
关于积分的说明 15082374
捐赠科研通 4817237
什么是DOI,文献DOI怎么找? 2578048
邀请新用户注册赠送积分活动 1532799
关于科研通互助平台的介绍 1491532