已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved method for cropland extraction of seasonal crops from multi-sensor satellite data

卫星 环境科学 遥感 萃取(化学) 地理 色谱法 工程类 航空航天工程 化学
作者
Danish Raza,Hong Shu,Majid Nazeer,Hasnat Aslam,Sahar Mirza,Xiongwu Xiao,Azeem Sardar,Hafsa Aeman
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (18): 6249-6284
标识
DOI:10.1080/01431161.2024.2388864
摘要

Monitoring agricultural land over vast geographical areas presents challenges due to the absence of accurate, comprehensive and precise data, which has become a complex process that is difficult to do in terms of both timespans and consistency. Hence, this study presents an improved approach for the identification of agricultural land by utilizing the capabilities of Sentinel-1 and Sentinel-2 satellites with a variety of vegetation and non-vegetation indices and machine learning algorithms. The Multispectral Correlation Mapper (MCM) and Random Forest (RF) algorithms are adopted to train different agricultural lands, crop types and sowing and cultivation seasons. The 45-bands mega-file data cube (MFDC) fusion for each season incorporates essential indices and features derived from the Sentinel-1 and Sentinel-2 datasets for both seasons, i.e. Rabi (winter-spring season) and Kharif (summer-autumn season). The proposed method demonstrated resilience when applied to satellite datasets while effectively reducing the impact of non-agricultural elements such as shrubs, grass, bare soil and orchards. The results demonstrate a notable ability to differentiate between the Rabi and Kharif seasons, resulting in a high level of precision in measuring the extent of cultivated land during the Rabi and Kharif seasons with an area of 626,947 acres and 590,858 acres, respectively. The total land area, ascertained from the observation of the comprehensive cropping pattern and agricultural modifications during the entire year (June 2021–May 2022) is 635,655 acres. The validation exercise shows the higher accuracy of this method for cropland, with an overall accuracy of 98.8%, kappa of 0.97, user accuracy of 98.69% and producer accuracy of 99.13%. Additionally, it was spatially compared with the ESRI, ESA and MODIS cropland layers and government statistical data. Furthermore, the research investigates the temporal dynamics of agricultural growth phases using spectral bands and indices. This approach improves the accuracy of precise cropland identification and provides useful insights into crop phenology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Youy完成签到,获得积分10
刚刚
Star发布了新的文献求助10
1秒前
2秒前
潇潇声韵完成签到,获得积分10
2秒前
淡定的雁玉完成签到 ,获得积分10
3秒前
淡淡土豆应助lili992采纳,获得15
3秒前
3秒前
5秒前
传奇3应助心灵美的笑卉采纳,获得10
5秒前
7秒前
西红柿完成签到,获得积分10
7秒前
不知道是谁完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
月关完成签到 ,获得积分10
11秒前
西红柿发布了新的文献求助30
12秒前
科研通AI6应助夏小胖采纳,获得10
12秒前
抱抱你完成签到,获得积分20
12秒前
明亮三娘发布了新的文献求助10
12秒前
13秒前
菲菲完成签到 ,获得积分10
14秒前
怕黑钢笔完成签到 ,获得积分10
15秒前
科目三应助123采纳,获得10
15秒前
lili992完成签到,获得积分20
16秒前
zy发布了新的文献求助10
18秒前
番茄鱼完成签到 ,获得积分10
20秒前
Bo发布了新的文献求助10
20秒前
21秒前
千纸鹤完成签到 ,获得积分10
22秒前
斯文败类应助搞怪城采纳,获得10
22秒前
活力广缘完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
25秒前
笑点低人英完成签到 ,获得积分10
25秒前
田様应助Star采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
Kevin发布了新的文献求助10
27秒前
曾予嘉完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509080
求助须知:如何正确求助?哪些是违规求助? 4604125
关于积分的说明 14489198
捐赠科研通 4538775
什么是DOI,文献DOI怎么找? 2487190
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838