Improved method for cropland extraction of seasonal crops from multi-sensor satellite data

卫星 环境科学 遥感 萃取(化学) 地理 色谱法 工程类 航空航天工程 化学
作者
Danish Raza,Hong Shu,Majid Nazeer,Hasnat Aslam,Sahar Mirza,Xiongwu Xiao,Azeem Sardar,Hafsa Aeman
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (18): 6249-6284
标识
DOI:10.1080/01431161.2024.2388864
摘要

Monitoring agricultural land over vast geographical areas presents challenges due to the absence of accurate, comprehensive and precise data, which has become a complex process that is difficult to do in terms of both timespans and consistency. Hence, this study presents an improved approach for the identification of agricultural land by utilizing the capabilities of Sentinel-1 and Sentinel-2 satellites with a variety of vegetation and non-vegetation indices and machine learning algorithms. The Multispectral Correlation Mapper (MCM) and Random Forest (RF) algorithms are adopted to train different agricultural lands, crop types and sowing and cultivation seasons. The 45-bands mega-file data cube (MFDC) fusion for each season incorporates essential indices and features derived from the Sentinel-1 and Sentinel-2 datasets for both seasons, i.e. Rabi (winter-spring season) and Kharif (summer-autumn season). The proposed method demonstrated resilience when applied to satellite datasets while effectively reducing the impact of non-agricultural elements such as shrubs, grass, bare soil and orchards. The results demonstrate a notable ability to differentiate between the Rabi and Kharif seasons, resulting in a high level of precision in measuring the extent of cultivated land during the Rabi and Kharif seasons with an area of 626,947 acres and 590,858 acres, respectively. The total land area, ascertained from the observation of the comprehensive cropping pattern and agricultural modifications during the entire year (June 2021–May 2022) is 635,655 acres. The validation exercise shows the higher accuracy of this method for cropland, with an overall accuracy of 98.8%, kappa of 0.97, user accuracy of 98.69% and producer accuracy of 99.13%. Additionally, it was spatially compared with the ESRI, ESA and MODIS cropland layers and government statistical data. Furthermore, the research investigates the temporal dynamics of agricultural growth phases using spectral bands and indices. This approach improves the accuracy of precise cropland identification and provides useful insights into crop phenology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助zfzf0422采纳,获得10
2秒前
Wendy1204发布了新的文献求助10
3秒前
3秒前
lydy1993完成签到,获得积分10
4秒前
5秒前
滴滴哒哒完成签到 ,获得积分10
5秒前
SciGPT应助波波玛奇朵采纳,获得10
7秒前
戏言121完成签到,获得积分10
7秒前
迷人的映雁完成签到,获得积分10
8秒前
8秒前
美丽的之双完成签到,获得积分10
9秒前
阿会完成签到,获得积分10
9秒前
wqm完成签到,获得积分10
10秒前
戏言121发布了新的文献求助10
11秒前
11秒前
12秒前
优雅的流沙完成签到 ,获得积分10
13秒前
猫的海完成签到,获得积分10
13秒前
13秒前
Eason Liu完成签到,获得积分0
14秒前
Wendy1204完成签到,获得积分20
14秒前
Hello应助654采纳,获得10
14秒前
咩咩羊完成签到,获得积分10
14秒前
18秒前
lianqing完成签到,获得积分10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
19秒前
RC_Wang应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
hh应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得30
19秒前
19秒前
Leif应助科研通管家采纳,获得20
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824