Improved method for cropland extraction of seasonal crops from multi-sensor satellite data

卫星 环境科学 遥感 萃取(化学) 地理 色谱法 工程类 航空航天工程 化学
作者
Danish Raza,Hong Shu,Majid Nazeer,Hasnat Aslam,Sahar Mirza,Xiongwu Xiao,Azeem Sardar,Hafsa Aeman
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (18): 6249-6284
标识
DOI:10.1080/01431161.2024.2388864
摘要

Monitoring agricultural land over vast geographical areas presents challenges due to the absence of accurate, comprehensive and precise data, which has become a complex process that is difficult to do in terms of both timespans and consistency. Hence, this study presents an improved approach for the identification of agricultural land by utilizing the capabilities of Sentinel-1 and Sentinel-2 satellites with a variety of vegetation and non-vegetation indices and machine learning algorithms. The Multispectral Correlation Mapper (MCM) and Random Forest (RF) algorithms are adopted to train different agricultural lands, crop types and sowing and cultivation seasons. The 45-bands mega-file data cube (MFDC) fusion for each season incorporates essential indices and features derived from the Sentinel-1 and Sentinel-2 datasets for both seasons, i.e. Rabi (winter-spring season) and Kharif (summer-autumn season). The proposed method demonstrated resilience when applied to satellite datasets while effectively reducing the impact of non-agricultural elements such as shrubs, grass, bare soil and orchards. The results demonstrate a notable ability to differentiate between the Rabi and Kharif seasons, resulting in a high level of precision in measuring the extent of cultivated land during the Rabi and Kharif seasons with an area of 626,947 acres and 590,858 acres, respectively. The total land area, ascertained from the observation of the comprehensive cropping pattern and agricultural modifications during the entire year (June 2021–May 2022) is 635,655 acres. The validation exercise shows the higher accuracy of this method for cropland, with an overall accuracy of 98.8%, kappa of 0.97, user accuracy of 98.69% and producer accuracy of 99.13%. Additionally, it was spatially compared with the ESRI, ESA and MODIS cropland layers and government statistical data. Furthermore, the research investigates the temporal dynamics of agricultural growth phases using spectral bands and indices. This approach improves the accuracy of precise cropland identification and provides useful insights into crop phenology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助闫什采纳,获得30
刚刚
1秒前
2秒前
2秒前
2秒前
瞿霞发布了新的文献求助20
3秒前
3秒前
3秒前
慕青应助认真的芷蕾采纳,获得10
3秒前
风格化橙发布了新的文献求助10
4秒前
秋秋完成签到,获得积分10
5秒前
5秒前
小闵发布了新的文献求助10
5秒前
ev-nano完成签到,获得积分10
6秒前
爱丸发布了新的文献求助10
7秒前
7秒前
hahahah完成签到,获得积分10
7秒前
唐唐发布了新的文献求助10
8秒前
高贵的傲菡完成签到,获得积分10
9秒前
9秒前
10秒前
Bianh发布了新的文献求助10
10秒前
无极微光应助瞿霞采纳,获得20
10秒前
RR完成签到 ,获得积分10
10秒前
Jackson发布了新的文献求助10
11秒前
johnwick完成签到,获得积分20
12秒前
德克医生完成签到,获得积分10
13秒前
852应助毛毛采纳,获得10
13秒前
13秒前
13秒前
无花果应助Sophia采纳,获得20
13秒前
丘比特应助hahahah采纳,获得10
16秒前
16秒前
研友_VZG7GZ应助TCB采纳,获得10
17秒前
17秒前
18秒前
斯文败类应助贾一丹采纳,获得10
21秒前
穆仰发布了新的文献求助20
21秒前
22秒前
深情安青应助呆萌的迎夏采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588962
求助须知:如何正确求助?哪些是违规求助? 4671741
关于积分的说明 14789385
捐赠科研通 4626869
什么是DOI,文献DOI怎么找? 2532017
邀请新用户注册赠送积分活动 1500619
关于科研通互助平台的介绍 1468373