Discovery of AMPs from Random Peptides via Deep Learning-Based Model and Biological Activity Validation

抗菌肽 化学 抗菌剂 鉴别器 深度学习 计算生物学 人工智能 防御素 机器学习 生物化学 计算机科学 生物 电信 有机化学 探测器
作者
Jun Du,Changyan Yang,Yabo Deng,Hai Guo,Mengyun Gu,Dan‐Na Chen,Xia Liu,Jinqi Huang,Wenjin Yan,Jian Liu
出处
期刊:European journal of medicinal chemistry [Elsevier]
卷期号:277: 116797-116797
标识
DOI:10.1016/j.ejmech.2024.116797
摘要

The ample peptide field is the best source for discovering clinically available novel antimicrobial peptides (AMPs) to address emerging drug resistance. However, discovering novel AMPs is complex and expensive, representing a major challenge. Recent advances in artificial intelligence (AI) have significantly improved the efficiency of identifying antimicrobial peptides from large libraries, whereas using random peptides as negative data increases the difficulty of discovering antimicrobial peptides from random peptides using discriminative models. In this study, we constructed three multi-discriminator models using deep learning and successfully screened twelve AMPs from a library of 30,000 random peptides. three candidate peptides (P2, P11, and P12) were screened by antimicrobial experiments, and further experiments showed that they not only possessed excellent antimicrobial activity but also had extremely low hemolytic activity. Mechanistic studies showed that these peptides exerted their bactericidal effects through membrane disruption, thus reducing the possibility of bacterial resistance. Notably, peptide 12 (P12) showed significant efficacy in a mouse model of Staphylococcus aureus wound infection with low toxicity to major organs at the highest tested dose (400 mg/kg). These results suggest deep learning-based multi-discriminator models can identify AMPs from random peptides with potential clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小狐狸完成签到,获得积分20
刚刚
刚刚
刚刚
勤奋流沙完成签到 ,获得积分10
刚刚
小小完成签到,获得积分10
刚刚
zhugao完成签到,获得积分10
1秒前
木木完成签到 ,获得积分10
1秒前
1秒前
木木完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
执笔完成签到,获得积分10
4秒前
完美世界应助孙文采纳,获得10
4秒前
lw777完成签到,获得积分10
4秒前
沙克几十块完成签到,获得积分10
5秒前
搜集达人应助小小采纳,获得10
5秒前
Chemistry发布了新的文献求助10
5秒前
redondo10完成签到,获得积分0
5秒前
小狐狸发布了新的文献求助10
6秒前
小王哪跑完成签到,获得积分10
7秒前
ding应助李小伟采纳,获得10
8秒前
8秒前
veraonly发布了新的文献求助10
8秒前
xiaoyudianddd完成签到,获得积分10
9秒前
体贴的颜完成签到,获得积分10
10秒前
爆米花应助哈哈哈哈哈采纳,获得10
10秒前
10秒前
redondo5完成签到,获得积分10
12秒前
Hello应助ds采纳,获得10
12秒前
在水一方应助小狐狸采纳,获得10
12秒前
13秒前
13秒前
早早入眠完成签到,获得积分10
14秒前
无花果应助zz采纳,获得30
14秒前
sjx_13351766056完成签到 ,获得积分10
15秒前
16秒前
16秒前
聪明的灵寒完成签到 ,获得积分10
16秒前
不可思议的止血钳完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011