Identification of high-risk intracranial plaques with 3D high-resolution magnetic resonance imaging-based radiomics and machine learning

无线电技术 医学 磁共振成像 神经组阅片室 无症状的 接收机工作特性 放射科 高分辨率 神经学 内科学 遥感 精神科 地质学
作者
Hongxia Li,Jia Liu,Zheng Dong,Xingzhi Chen,Changsheng Zhou,Chencui Huang,Yingle Li,Quanhui Liu,Xiaoqin Su,Xiaoqing Cheng,Guangming Lu
出处
期刊:Journal of Neurology [Springer Nature]
卷期号:269 (12): 6494-6503 被引量:14
标识
DOI:10.1007/s00415-022-11315-4
摘要

Identifying high-risk intracranial plaques is significant for the treatment and prevention of stroke.To develop a high-risk plaque model using three-dimensional (3D) high-resolution magnetic resonance imaging (HRMRI) based radiomics features and machine learning.136 patients with documented symptomatic intracranial artery stenosis and available HRMRI data were included. Among these patients, 136 and 92 plaques were identified as symptomatic and asymptomatic plaques, respectively. A conventional model was developed by recording and quantifying the radiological plaque characteristics. Radiomics features from T1-weighted images (T1WI) and contrast-enhanced T1WI (CE-T1WI) were used to construct a high-risk plaque model with linear support vector classification (linear SVC). The radiological and radiomics features were combined to build a combined model. Receiver operating characteristic (ROC) curves were used to evaluate these models.Plaque length, burden, and enhancement were independently associated with clinical symptoms and were included in the conventional model, which had an AUC of 0.853 vs. 0.837 in the training and test sets. While the radiomics and the combined model showed an improved AUC: 0.923 vs. 0.925 for the training sets and 0.906 vs. 0.903 in the test sets. Both the radiomics model (p = 0.024, p = 0.018) and combined model (p = 0.042, p = 0.049) outperformed the conventional model in the two sets, whereas the performance of the combined model was not significantly different from that of the radiomics model in the two sets (p = 0.583 and p = 0.606).The radiomics model based on 3D HRMRI can accurately differentiate symptomatic from asymptomatic intracranial arterial plaques and significantly outperforms the conventional model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻发布了新的文献求助10
2秒前
冲冲冲完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
善良身影完成签到,获得积分10
5秒前
天天快乐应助郭豪琪采纳,获得10
6秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
8秒前
Su发布了新的文献求助10
8秒前
8秒前
淡定的思松应助呆萌士晋采纳,获得10
8秒前
9秒前
10秒前
dilli完成签到 ,获得积分10
10秒前
cwy发布了新的文献求助10
12秒前
wz发布了新的文献求助10
12秒前
balzacsun发布了新的文献求助10
14秒前
JamesPei应助星星采纳,获得10
14秒前
15秒前
15秒前
laodie完成签到,获得积分10
16秒前
彭于晏应助ipeakkka采纳,获得10
16秒前
16秒前
敏感的芷发布了新的文献求助10
16秒前
susan发布了新的文献求助10
16秒前
17秒前
李爱国应助轻松的贞采纳,获得10
17秒前
wz完成签到,获得积分10
18秒前
子川完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824