Identification of high-risk intracranial plaques with 3D high-resolution magnetic resonance imaging-based radiomics and machine learning

无线电技术 医学 磁共振成像 神经组阅片室 无症状的 接收机工作特性 放射科 高分辨率 神经学 内科学 遥感 精神科 地质学
作者
Hongxia Li,Jia Liu,Zheng Dong,Xingzhi Chen,Changsheng Zhou,Chencui Huang,Yingle Li,Quanhui Liu,Xiaoqin Su,Xiaoqing Cheng,Guangming Lu
出处
期刊:Journal of Neurology [Springer Nature]
卷期号:269 (12): 6494-6503 被引量:22
标识
DOI:10.1007/s00415-022-11315-4
摘要

Identifying high-risk intracranial plaques is significant for the treatment and prevention of stroke.To develop a high-risk plaque model using three-dimensional (3D) high-resolution magnetic resonance imaging (HRMRI) based radiomics features and machine learning.136 patients with documented symptomatic intracranial artery stenosis and available HRMRI data were included. Among these patients, 136 and 92 plaques were identified as symptomatic and asymptomatic plaques, respectively. A conventional model was developed by recording and quantifying the radiological plaque characteristics. Radiomics features from T1-weighted images (T1WI) and contrast-enhanced T1WI (CE-T1WI) were used to construct a high-risk plaque model with linear support vector classification (linear SVC). The radiological and radiomics features were combined to build a combined model. Receiver operating characteristic (ROC) curves were used to evaluate these models.Plaque length, burden, and enhancement were independently associated with clinical symptoms and were included in the conventional model, which had an AUC of 0.853 vs. 0.837 in the training and test sets. While the radiomics and the combined model showed an improved AUC: 0.923 vs. 0.925 for the training sets and 0.906 vs. 0.903 in the test sets. Both the radiomics model (p = 0.024, p = 0.018) and combined model (p = 0.042, p = 0.049) outperformed the conventional model in the two sets, whereas the performance of the combined model was not significantly different from that of the radiomics model in the two sets (p = 0.583 and p = 0.606).The radiomics model based on 3D HRMRI can accurately differentiate symptomatic from asymptomatic intracranial arterial plaques and significantly outperforms the conventional model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐小瑶完成签到 ,获得积分20
1秒前
甜甜的tiantian完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
shi0331完成签到,获得积分10
9秒前
飞云完成签到 ,获得积分10
10秒前
执着的以筠完成签到 ,获得积分10
15秒前
shihun完成签到 ,获得积分20
16秒前
Wangyf完成签到 ,获得积分10
23秒前
cadcae完成签到,获得积分10
25秒前
合适醉蝶完成签到 ,获得积分10
26秒前
longer完成签到 ,获得积分10
31秒前
数乱了梨花完成签到 ,获得积分0
32秒前
herpes完成签到 ,获得积分0
33秒前
量子星尘发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
33秒前
Feng完成签到 ,获得积分10
35秒前
hadfunsix完成签到 ,获得积分10
41秒前
俊逸的香萱完成签到 ,获得积分10
44秒前
23333完成签到 ,获得积分10
48秒前
52秒前
量子星尘发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
57秒前
23完成签到 ,获得积分10
59秒前
丰富的归尘完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
myq完成签到 ,获得积分10
1分钟前
崔京成完成签到 ,获得积分10
1分钟前
Amelia完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
TRACEY发布了新的文献求助10
1分钟前
1分钟前
1分钟前
tingalan完成签到,获得积分0
1分钟前
Yenom完成签到 ,获得积分10
1分钟前
Twonej应助Dengera采纳,获得30
1分钟前
抹不掉的记忆完成签到,获得积分10
1分钟前
吴丹发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664669
求助须知:如何正确求助?哪些是违规求助? 4867964
关于积分的说明 15108331
捐赠科研通 4823340
什么是DOI,文献DOI怎么找? 2582243
邀请新用户注册赠送积分活动 1536300
关于科研通互助平台的介绍 1494695