Identification of high-risk intracranial plaques with 3D high-resolution magnetic resonance imaging-based radiomics and machine learning

无线电技术 医学 磁共振成像 神经组阅片室 无症状的 接收机工作特性 放射科 高分辨率 神经学 内科学 遥感 精神科 地质学
作者
Hongxia Li,Jia Liu,Zheng Dong,Xingzhi Chen,Changsheng Zhou,Chencui Huang,Yingle Li,Quanhui Liu,Xiaoqin Su,Xiaoqing Cheng,Guangming Lu
出处
期刊:Journal of Neurology [Springer Science+Business Media]
卷期号:269 (12): 6494-6503 被引量:15
标识
DOI:10.1007/s00415-022-11315-4
摘要

Identifying high-risk intracranial plaques is significant for the treatment and prevention of stroke.To develop a high-risk plaque model using three-dimensional (3D) high-resolution magnetic resonance imaging (HRMRI) based radiomics features and machine learning.136 patients with documented symptomatic intracranial artery stenosis and available HRMRI data were included. Among these patients, 136 and 92 plaques were identified as symptomatic and asymptomatic plaques, respectively. A conventional model was developed by recording and quantifying the radiological plaque characteristics. Radiomics features from T1-weighted images (T1WI) and contrast-enhanced T1WI (CE-T1WI) were used to construct a high-risk plaque model with linear support vector classification (linear SVC). The radiological and radiomics features were combined to build a combined model. Receiver operating characteristic (ROC) curves were used to evaluate these models.Plaque length, burden, and enhancement were independently associated with clinical symptoms and were included in the conventional model, which had an AUC of 0.853 vs. 0.837 in the training and test sets. While the radiomics and the combined model showed an improved AUC: 0.923 vs. 0.925 for the training sets and 0.906 vs. 0.903 in the test sets. Both the radiomics model (p = 0.024, p = 0.018) and combined model (p = 0.042, p = 0.049) outperformed the conventional model in the two sets, whereas the performance of the combined model was not significantly different from that of the radiomics model in the two sets (p = 0.583 and p = 0.606).The radiomics model based on 3D HRMRI can accurately differentiate symptomatic from asymptomatic intracranial arterial plaques and significantly outperforms the conventional model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思敏发布了新的文献求助10
刚刚
刚刚
Clancy发布了新的文献求助10
1秒前
gxq完成签到,获得积分10
1秒前
hebrews完成签到,获得积分10
2秒前
2秒前
木子发布了新的文献求助10
2秒前
Talk发布了新的文献求助10
3秒前
3秒前
田様应助早点睡觉丶采纳,获得10
4秒前
绝世冰淇淋完成签到 ,获得积分10
4秒前
4秒前
能干的谷蕊完成签到 ,获得积分10
5秒前
良辰完成签到,获得积分0
5秒前
spenley完成签到,获得积分10
7秒前
Hello应助chenming采纳,获得10
8秒前
8秒前
SciGPT应助猪猪hero采纳,获得10
8秒前
9秒前
9秒前
ZCJ发布了新的文献求助10
11秒前
雪白蚂蚁发布了新的文献求助10
11秒前
踏实大侠完成签到,获得积分10
12秒前
12秒前
12秒前
呆萌的太阳完成签到 ,获得积分10
13秒前
鬼笔环肽发布了新的文献求助30
13秒前
DamenS发布了新的文献求助10
13秒前
painx完成签到,获得积分10
14秒前
bbanshan完成签到,获得积分10
14秒前
Talk完成签到,获得积分10
15秒前
Lucas应助脆啵啵马克宝采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得30
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954228
求助须知:如何正确求助?哪些是违规求助? 3500273
关于积分的说明 11098748
捐赠科研通 3230782
什么是DOI,文献DOI怎么找? 1786143
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801638