Identification of high-risk intracranial plaques with 3D high-resolution magnetic resonance imaging-based radiomics and machine learning

无线电技术 医学 磁共振成像 神经组阅片室 无症状的 接收机工作特性 放射科 高分辨率 神经学 内科学 遥感 精神科 地质学
作者
Hongxia Li,Jia Liu,Zheng Dong,Xingzhi Chen,Changsheng Zhou,Chencui Huang,Yingle Li,Quanhui Liu,Xiaoqin Su,Xiaoqing Cheng,Guangming Lu
出处
期刊:Journal of Neurology [Springer Nature]
卷期号:269 (12): 6494-6503 被引量:22
标识
DOI:10.1007/s00415-022-11315-4
摘要

Identifying high-risk intracranial plaques is significant for the treatment and prevention of stroke.To develop a high-risk plaque model using three-dimensional (3D) high-resolution magnetic resonance imaging (HRMRI) based radiomics features and machine learning.136 patients with documented symptomatic intracranial artery stenosis and available HRMRI data were included. Among these patients, 136 and 92 plaques were identified as symptomatic and asymptomatic plaques, respectively. A conventional model was developed by recording and quantifying the radiological plaque characteristics. Radiomics features from T1-weighted images (T1WI) and contrast-enhanced T1WI (CE-T1WI) were used to construct a high-risk plaque model with linear support vector classification (linear SVC). The radiological and radiomics features were combined to build a combined model. Receiver operating characteristic (ROC) curves were used to evaluate these models.Plaque length, burden, and enhancement were independently associated with clinical symptoms and were included in the conventional model, which had an AUC of 0.853 vs. 0.837 in the training and test sets. While the radiomics and the combined model showed an improved AUC: 0.923 vs. 0.925 for the training sets and 0.906 vs. 0.903 in the test sets. Both the radiomics model (p = 0.024, p = 0.018) and combined model (p = 0.042, p = 0.049) outperformed the conventional model in the two sets, whereas the performance of the combined model was not significantly different from that of the radiomics model in the two sets (p = 0.583 and p = 0.606).The radiomics model based on 3D HRMRI can accurately differentiate symptomatic from asymptomatic intracranial arterial plaques and significantly outperforms the conventional model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
7秒前
10秒前
量子星尘发布了新的文献求助10
15秒前
蜡笔小z完成签到 ,获得积分10
15秒前
饿哭了塞完成签到 ,获得积分10
15秒前
17秒前
LuoYR@SZU完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
小玲子完成签到 ,获得积分10
21秒前
24秒前
量子星尘发布了新的文献求助10
30秒前
55555555完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
40秒前
cq_2完成签到,获得积分0
41秒前
43秒前
46秒前
Yy完成签到 ,获得积分10
50秒前
51秒前
量子星尘发布了新的文献求助10
51秒前
53秒前
53秒前
53秒前
53秒前
稚祎完成签到 ,获得积分10
53秒前
Yina完成签到 ,获得积分10
53秒前
崩溃完成签到,获得积分10
54秒前
美猴王发布了新的文献求助30
58秒前
58秒前
伶俐的火完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
silence完成签到,获得积分10
1分钟前
bigpluto完成签到,获得积分0
1分钟前
153266916完成签到 ,获得积分10
1分钟前
1分钟前
勤奋丸子完成签到 ,获得积分10
1分钟前
1分钟前
优秀的白卉完成签到 ,获得积分10
1分钟前
pangminmin完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773340
求助须知:如何正确求助?哪些是违规求助? 5610028
关于积分的说明 15430945
捐赠科研通 4905868
什么是DOI,文献DOI怎么找? 2639872
邀请新用户注册赠送积分活动 1587768
关于科研通互助平台的介绍 1542775