聚磷酸铵
聚乳酸
热重分析
材料科学
傅里叶变换红外光谱
阻燃剂
锥形量热计
极限氧指数
核化学
化学工程
复合材料
化学
有机化学
燃烧
聚合物
烧焦
工程类
作者
Qing Zhang,Huiyuan Liu,Junxia Guan,Xiao-Chun Yang,Baojing Luo
出处
期刊:Molecules
[MDPI AG]
日期:2022-07-25
卷期号:27 (15): 4748-4748
被引量:19
标识
DOI:10.3390/molecules27154748
摘要
Phosphating sesbania gum (DESG) was obtained by modifying sesbania gum (SG) with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and endic anhydride (EA). The structure of DESG was determined using Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance spectroscopy (1H-NMR). Flame-retardant polylactic acid (PLA) composites were prepared by melt-blending PLA with DESG, which acted as a carbon source, and ammonium polyphosphate (APP), which acted as an acid source and a gas source. The flame retardancy of the PLA composite was investigated using vertical combustion (UL-94), the limiting oxygen index (LOI) and the cone calorimeter (CONE) test. Thermal properties and morphology were characterized via thermogravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM), respectively. Experimental results indicated that when the mass ratio of DESG/APP was equal to 12/8 the LOI value was 32.2%; a vertical burning test (UL-94) V-0 rating was achieved. Meanwhile, the sample showed a lowest total heat release (THR) value of 52.7 MJ/m2, which is a 32.5% reduction compared to that of neat PLA. Using FESEM, the uniform distribution of DESG and APP in the PLA matrix was observed. The synergistic effect of DESG and APP effectively enhanced the flame retardancy of PLA. Additionally, the synergistic mechanism of DESG and APP in PLA was proposed.
科研通智能强力驱动
Strongly Powered by AbleSci AI