已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A sparse representation strategy to eliminate pseudo-HFO events from intracranial EEG for seizure onset zone localization

发作性 匹配追踪 虚假关系 计算机科学 模式识别(心理学) 稀疏逼近 脑电图 人工智能 代表(政治) 信号(编程语言) 波形 立体脑电图 算法 神经科学 机器学习 压缩传感 雷达 法学 程序设计语言 政治 生物 电信 政治学
作者
Behrang Fazli Besheli,Zhiyi Sha,Jay R. Gavvala,Candan Gürses,Saçit Karamürsel,Michael Quach,Daniel J. Curry,Sameer A. Sheth,David J. Francis,Thomas R. Henry,Nuri F. Ince
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (4): 046046-046046 被引量:8
标识
DOI:10.1088/1741-2552/ac8766
摘要

Abstract Objective. High-frequency oscillations (HFOs) are considered a biomarker of the epileptogenic zone in intracranial EEG recordings. However, automated HFO detectors confound true oscillations with spurious events caused by the presence of artifacts. Approach. We hypothesized that, unlike pseudo-HFOs with sharp transients or arbitrary shapes, real HFOs have a signal characteristic that can be represented using a small number of oscillatory bases. Based on this hypothesis using a sparse representation framework, this study introduces a new classification approach to distinguish true HFOs from the pseudo-events that mislead seizure onset zone (SOZ) localization. Moreover, we further classified the HFOs into ripples and fast ripples by introducing an adaptive reconstruction scheme using sparse representation. By visualizing the raw waveforms and time-frequency representation of events recorded from 16 patients, three experts labeled 6400 candidate events that passed an initial amplitude-threshold-based HFO detector. We formed a redundant analytical multiscale dictionary built from smooth oscillatory Gabor atoms and represented each event with orthogonal matching pursuit by using a small number of dictionary elements. We used the approximation error and residual signal at each iteration to extract features that can distinguish the HFOs from any type of artifact regardless of their corresponding source. We validated our model on sixteen subjects with thirty minutes of continuous interictal intracranial EEG recording from each. Main results. We showed that the accuracy of SOZ detection after applying our method was significantly improved. In particular, we achieved a 96.65% classification accuracy in labeled events and a 17.57% improvement in SOZ detection on continuous data. Our sparse representation framework can also distinguish between ripples and fast ripples. Significance. We show that by using a sparse representation approach we can remove the pseudo-HFOs from the pool of events and improve the reliability of detected HFOs in large data sets and minimize manual artifact elimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wannna发布了新的文献求助10
1秒前
3秒前
科目三应助LD采纳,获得10
3秒前
zeb完成签到,获得积分10
4秒前
开朗初蓝发布了新的文献求助10
6秒前
顾矜应助神勇的筝采纳,获得30
6秒前
wannna完成签到,获得积分10
8秒前
8秒前
逝水完成签到 ,获得积分10
8秒前
8秒前
烟花应助自由凝蕊采纳,获得10
10秒前
温暖的幼菱完成签到,获得积分10
10秒前
vvvvvv发布了新的文献求助10
11秒前
11秒前
开朗初蓝完成签到,获得积分20
14秒前
李爱国应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
17秒前
lingdang完成签到 ,获得积分10
19秒前
19秒前
bkagyin应助捱小秋采纳,获得10
20秒前
完美世界应助chany采纳,获得10
21秒前
LD发布了新的文献求助10
21秒前
QF发布了新的文献求助10
22秒前
23秒前
24秒前
荼靡落时完成签到,获得积分10
27秒前
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154722
求助须知:如何正确求助?哪些是违规求助? 2805534
关于积分的说明 7865058
捐赠科研通 2463710
什么是DOI,文献DOI怎么找? 1311554
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832