亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning–Based Prediction Models for Delirium: A Systematic Review and Meta-Analysis

谵妄 接收机工作特性 医学 荟萃分析 检查表 置信区间 科克伦图书馆 机器学习 人工智能 梅德林 系统回顾 样本量测定 统计 出版偏见 内科学 计算机科学 重症监护医学 心理学 认知心理学 法学 数学 政治学
作者
Qi Xie,Xing‐Lei Wang,Juhong Pei,Yin-Ping Wu,Qiang Guo,Yujie Su,Hui Yan,Ruiling Nan,Haixia Chen,Xinman Dou
出处
期刊:Journal of the American Medical Directors Association [Elsevier]
卷期号:23 (10): 1655-1668.e6 被引量:13
标识
DOI:10.1016/j.jamda.2022.06.020
摘要

To critically appraise and quantify the performance studies by employing machine learning (ML) to predict delirium.A systematic review and meta-analysis.Articles reporting the use of ML to predict delirium in adult patients were included. Studies were excluded if (1) the primary goal was only the identification of various risk factors for delirium; (2) the full-text article was not found; and (3) the article was published in a language other than English/Chinese.PubMed, Embase, Cochrane Library database, Web of Science, Grey literature, and other relevant databases for the related publications were searched (from inception to December 15, 2021). The data were extracted using a standard checklist, and the risk of bias was assessed through the prediction model risk of bias assessment tool. Meta-analysis with the area under the receiver operating characteristic curve, sensitivity, and specificity as effect measures, was performed with Metadisc software. Cochran Q and I2 statistics were used to assess the heterogeneity. Meta-regression was performed to determine the potential effect of adjustment for the key covariates.A total of 22 studies were included. Only 4 of 22 studies were quantitatively analyzed. The studies varied widely in reporting about the study participants, features and selection, handling of missing data, sample size calculations, and the intended clinical application of the model. For ML models, the overall pooled area under the receiver operating characteristic curve for predicting delirium was 0.89, sensitivity 0.85 (95% confidence interval 0.84‒0.85), and specificity 0.80 (95% confidence interval 0.81-0.80).We found that the ML model showed excellent performance in predicting delirium. This review highlights the potential shortcomings of the current approaches, including low comparability and reproducibility. Finally, we present the various recommendations on how these challenges can be effectively addressed before deploying these models in prospective analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助AJoe采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
24秒前
眼睛大鸡翅完成签到,获得积分10
27秒前
落后翠柏完成签到 ,获得积分10
30秒前
动人的书雪完成签到,获得积分10
1分钟前
shame完成签到 ,获得积分10
1分钟前
1分钟前
肥肥完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
AJoe发布了新的文献求助10
1分钟前
threewei发布了新的文献求助10
1分钟前
athena完成签到,获得积分10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
贾斯汀铁柱完成签到,获得积分10
2分钟前
athena发布了新的文献求助30
2分钟前
华仔应助lbjcp3采纳,获得10
2分钟前
Joe关闭了Joe文献求助
2分钟前
科研通AI2S应助threewei采纳,获得10
2分钟前
科研通AI2S应助Aaaaaa瘾采纳,获得10
2分钟前
Ava应助去去去去采纳,获得10
3分钟前
边城小子完成签到,获得积分10
3分钟前
4分钟前
lbjcp3发布了新的文献求助10
4分钟前
SciGPT应助lbjcp3采纳,获得30
4分钟前
迷你的靖雁完成签到,获得积分10
4分钟前
5分钟前
5分钟前
从容芮完成签到,获得积分0
5分钟前
lbjcp3发布了新的文献求助30
5分钟前
5分钟前
林非鹿完成签到,获得积分10
5分钟前
AJoe发布了新的文献求助10
5分钟前
5分钟前
小蘑菇应助AJoe采纳,获得10
5分钟前
去去去去发布了新的文献求助10
5分钟前
Woo_SH完成签到 ,获得积分10
5分钟前
田様应助去去去去采纳,获得10
5分钟前
子月之路完成签到,获得积分10
6分钟前
6分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795287
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146