Machine Learning–Based Prediction Models for Delirium: A Systematic Review and Meta-Analysis

谵妄 接收机工作特性 医学 荟萃分析 检查表 置信区间 科克伦图书馆 机器学习 人工智能 梅德林 系统回顾 样本量测定 统计 出版偏见 内科学 计算机科学 重症监护医学 心理学 认知心理学 法学 数学 政治学
作者
Qi Xie,Xing‐Lei Wang,Juhong Pei,Yin-Ping Wu,Qiang Guo,Yujie Su,Hui Yan,Ruiling Nan,Haixia Chen,Xinman Dou
出处
期刊:Journal of the American Medical Directors Association [Elsevier BV]
卷期号:23 (10): 1655-1668.e6 被引量:21
标识
DOI:10.1016/j.jamda.2022.06.020
摘要

To critically appraise and quantify the performance studies by employing machine learning (ML) to predict delirium.A systematic review and meta-analysis.Articles reporting the use of ML to predict delirium in adult patients were included. Studies were excluded if (1) the primary goal was only the identification of various risk factors for delirium; (2) the full-text article was not found; and (3) the article was published in a language other than English/Chinese.PubMed, Embase, Cochrane Library database, Web of Science, Grey literature, and other relevant databases for the related publications were searched (from inception to December 15, 2021). The data were extracted using a standard checklist, and the risk of bias was assessed through the prediction model risk of bias assessment tool. Meta-analysis with the area under the receiver operating characteristic curve, sensitivity, and specificity as effect measures, was performed with Metadisc software. Cochran Q and I2 statistics were used to assess the heterogeneity. Meta-regression was performed to determine the potential effect of adjustment for the key covariates.A total of 22 studies were included. Only 4 of 22 studies were quantitatively analyzed. The studies varied widely in reporting about the study participants, features and selection, handling of missing data, sample size calculations, and the intended clinical application of the model. For ML models, the overall pooled area under the receiver operating characteristic curve for predicting delirium was 0.89, sensitivity 0.85 (95% confidence interval 0.84‒0.85), and specificity 0.80 (95% confidence interval 0.81-0.80).We found that the ML model showed excellent performance in predicting delirium. This review highlights the potential shortcomings of the current approaches, including low comparability and reproducibility. Finally, we present the various recommendations on how these challenges can be effectively addressed before deploying these models in prospective analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ljc发布了新的文献求助10
1秒前
叶白山完成签到,获得积分10
2秒前
wx完成签到,获得积分20
2秒前
2秒前
2秒前
纪梵希发布了新的文献求助10
3秒前
3秒前
morena应助汴汴采纳,获得30
4秒前
一口蛋黄苏完成签到,获得积分20
4秒前
4秒前
SYLH应助江南之南采纳,获得10
4秒前
123完成签到,获得积分10
5秒前
5秒前
你好可爱发布了新的文献求助10
5秒前
李爱国应助默默沛槐采纳,获得10
6秒前
飘逸小笼包完成签到,获得积分10
6秒前
杨新如完成签到,获得积分10
9秒前
Regina发布了新的文献求助10
9秒前
10秒前
英俊的铭应助hjg采纳,获得10
10秒前
云舒发布了新的文献求助10
10秒前
善学以致用应助故意的驳采纳,获得10
10秒前
方方完成签到,获得积分10
12秒前
肯德鸭完成签到,获得积分10
12秒前
12秒前
汴汴完成签到,获得积分10
12秒前
13秒前
Pyrene完成签到,获得积分10
14秒前
16秒前
北珏完成签到,获得积分10
16秒前
17秒前
可靠之玉发布了新的文献求助10
17秒前
华仔应助刘一采纳,获得10
17秒前
18秒前
19秒前
天天快乐应助哈哈哈哈采纳,获得10
19秒前
天天快乐应助你好可爱采纳,获得10
19秒前
烟花应助moheng采纳,获得10
20秒前
kelakola完成签到,获得积分10
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954537
求助须知:如何正确求助?哪些是违规求助? 3500689
关于积分的说明 11100600
捐赠科研通 3231199
什么是DOI,文献DOI怎么找? 1786319
邀请新用户注册赠送积分活动 869946
科研通“疑难数据库(出版商)”最低求助积分说明 801731