非生物成分
化学
环境化学
氮同位素
稳定同位素比值
氮气
有机化学
生态学
生物
量子力学
物理
作者
Wang Chun-lei,Mark R. Fuller,Jimmy Murillo-Gelvez,Rachael T. Rezes,Paul B. Hatzinger,Pei C. Chiu,Linnea J. Heraty,Neil C. Sturchio
标识
DOI:10.1021/acs.est.3c10788
摘要
2,4-Dinitroanisole (DNAN) is a main constituent in various new insensitive munition formulations. Although DNAN is susceptible to biotic and abiotic transformations, in many environmental instances, transformation mechanisms are difficult to resolve, distinguish, or apportion on the basis solely of analysis of concentrations. We used compound-specific isotope analysis (CSIA) to investigate the characteristic isotope fractionations of the biotic (by three microbial consortia and three pure cultures) and abiotic (by 9,10-anthrahydroquinone-2-sulfonic acid [AHQS]) transformations of DNAN. The correlations of isotope enrichment factors (ΛN/C) for biotic transformations had a range of values from 4.93 ± 0.53 to 12.19 ± 1.23, which is entirely distinct from ΛN/C values reported previously for alkaline hydrolysis, enzymatic hydrolysis, reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, and UV-driven phototransformations. The ΛN/C value associated with the abiotic reduction by AHQS was 38.76 ± 2.23, within the range of previously reported values for DNAN reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, albeit the mean ΛN/C was lower. These results enhance the database of isotope effects accompanying DNAN transformations under environmentally relevant conditions, allowing better evaluation of the extents of biotic and abiotic transformations of DNAN that occur in soils, groundwaters, surface waters, and the marine environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI