Classifying alkaliphilic proteins using embeddings from protein language model

鉴定(生物学) 计算机科学 计算生物学 蛋白质工程 碱度 人工智能 机器学习 生物化学 化学 生物 生态学 有机化学
作者
Meredita Susanty,Muhammad Khaerul Naim Mursalim,Rukman Hertadi,Ayu Purwarianti,Tati LE. Rajab
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108385-108385 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108385
摘要

Alkaliphilic proteins have great potential as biocatalysts in biotechnology, especially for enzyme engineering. Extensive research has focused on exploring the enzymatic potential of alkaliphiles and characterizing alkaliphilic proteins. However, the current method employed for identifying these proteins that requires web lab experiment is time-consuming, labor-intensive, and expensive. Therefore, the development of a computational method for alkaliphilic protein identification would be invaluable for protein engineering and design. In this study, we present a novel approach that uses embeddings from a protein language model called ESM-2(3B) in a deep learning framework to classify alkaliphilic and non-alkaliphilic proteins. To our knowledge, this is the first attempt to employ embeddings from a pre-trained protein language model to classify alkaliphilic protein. A reliable dataset comprising 1,002 alkaliphilic and 1,866 non-alkaliphilic proteins was constructed for training and testing the proposed model. The proposed model, dubbed ALPACA, achieves performance scores of 0.88, 0.84, and 0.75 for accuracy, f1-score, and Matthew correlation coefficient respectively on independent dataset. ALPACA is likely to serve as a valuable resource for exploring protein alkalinity and its role in protein design and engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈哈发布了新的文献求助10
刚刚
张大旭77发布了新的文献求助10
1秒前
3秒前
科研通AI5应助感动苡采纳,获得10
4秒前
雪山大地完成签到,获得积分10
4秒前
Beton_X发布了新的文献求助40
5秒前
6秒前
6秒前
嘿嘿嘿发布了新的文献求助10
6秒前
6秒前
7秒前
小肥鑫发布了新的文献求助10
8秒前
9秒前
scoot完成签到 ,获得积分10
9秒前
wjx关闭了wjx文献求助
9秒前
9秒前
蛋挞完成签到,获得积分20
9秒前
hhh完成签到 ,获得积分10
11秒前
爱学习发布了新的文献求助10
11秒前
张张发布了新的文献求助10
11秒前
wangsai0532完成签到,获得积分10
12秒前
12秒前
SciGPT应助1111111111111111采纳,获得10
12秒前
12秒前
Aaron完成签到 ,获得积分10
13秒前
xx完成签到,获得积分10
13秒前
嘿嘿嘿发布了新的文献求助10
13秒前
晗晗发布了新的文献求助10
14秒前
14秒前
研友_VZG7GZ应助小肥鑫采纳,获得10
14秒前
万能图书馆应助Joey采纳,获得10
16秒前
16秒前
17秒前
香蕉觅云应助EmmaLin采纳,获得10
17秒前
17秒前
77发布了新的文献求助10
18秒前
19秒前
FashionBoy应助泠漓采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676