MSMTSeg: Multi-Stained Multi-Tissue Segmentation of Kidney Histology Images via Generative Self-Supervised Meta-Learning Framework

计算机科学 分割 人工智能 模式识别(心理学) 特征提取 污渍 机器学习 病理 医学 染色
作者
Xueyu Liu,Rui Wang,Yexin Lai,Yongfei Wu,Hangbei Cheng,Yuanyue Lu,Jianan Zhang,Ning Hao,Chenglong Ban,Yanru Wang,Shuqin Tang,Yuxuan Yang,Ming Li,Xiaoshuang Zhou,Wen Zheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/jbhi.2024.3381047
摘要

Accurately diagnosing chronic kidney disease requires pathologists to assess the structure of multiple tissues under different stains, a process that is timeconsuming and labor-intensive. Current AI-based methods for automatic structure assessment, like segmentation, often demand extensive manual annotation and focus on single stain domain. To address these challenges, we introduce MSMTSeg, a generative self-supervised meta-learning framework for multi-stained multi-tissue segmentation in renal biopsy whole slide images (WSIs). MSMTSeg incorporates multiple stain transform models for style translation of inter-stain domains, a self-supervision module for obtaining pre-trained models with the domain-specific feature representation, and a meta-learning strategy that leverages generated virtual data and pre-trained models to learn the domain-invariant feature representation across multiple stains, thereby enhancing segmentation performance. Experimental results demonstrate that MSMTSeg achieves superior and robust performance, with mDSC of 0.836 and mIoU of 0.718 for multiple tissues under different stains, using only one annotated training sample for each stain. Our ablation study confirms the effectiveness of each component, positioning MSMTSeg ahead of classic advanced segmentation networks, recent few-shot segmentation methods, and unsupervised domain adaptation methods. In conclusion, our proposed few-shot cross-domain technology offers a feasible and cost-effective solution for multi-stained renal histology segmentation, providing convenient assistance to pathologists in clinical practice. The source code and conditionally accessible data are available at https://github.com/SnowRain510/MSMTSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
整齐的白筠完成签到,获得积分10
1秒前
WWWUBING完成签到,获得积分10
2秒前
小文发布了新的文献求助10
2秒前
MJQ发布了新的文献求助10
2秒前
2秒前
春夏秋冬发布了新的文献求助10
3秒前
3秒前
3秒前
李健的小迷弟应助nn采纳,获得10
3秒前
彭于晏应助sunzhiyu233采纳,获得10
4秒前
4秒前
zzznznnn完成签到,获得积分10
4秒前
4秒前
马保国123发布了新的文献求助10
4秒前
4秒前
慕青应助wsljc134采纳,获得10
4秒前
5秒前
世界尽头完成签到,获得积分10
6秒前
6秒前
君与完成签到,获得积分10
6秒前
yili发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI5应助专注乐巧采纳,获得10
7秒前
自信晟睿发布了新的文献求助10
7秒前
7秒前
8秒前
七里香完成签到 ,获得积分10
8秒前
handsomecat关注了科研通微信公众号
8秒前
细心映寒完成签到 ,获得积分10
8秒前
8秒前
fff完成签到,获得积分10
8秒前
领导范儿应助MJQ采纳,获得100
8秒前
9秒前
Owen应助世界尽头采纳,获得10
9秒前
echolan发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759