MSMTSeg: Multi-Stained Multi-Tissue Segmentation of Kidney Histology Images via Generative Self-Supervised Meta-Learning Framework

计算机科学 分割 人工智能 模式识别(心理学) 特征提取 污渍 机器学习 病理 医学 染色
作者
Xueyu Liu,Rui Wang,Yexin Lai,Yongfei Wu,Hangbei Cheng,Yuanyue Lu,Jianan Zhang,Ning Hao,Chenglong Ban,Li Wang,Shuqin Tang,Yuxuan Yang,Ming Li,Xiaoshuang Zhou,Wen Zheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/jbhi.2024.3381047
摘要

Accurately diagnosing chronic kidney disease requires pathologists to assess the structure of multiple tissues under different stains, a process that is timeconsuming and labor-intensive. Current AI-based methods for automatic structure assessment, like segmentation, often demand extensive manual annotation and focus on single stain domain. To address these challenges, we introduce MSMTSeg, a generative self-supervised meta-learning framework for multi-stained multi-tissue segmentation in renal biopsy whole slide images (WSIs). MSMTSeg incorporates multiple stain transform models for style translation of inter-stain domains, a self-supervision module for obtaining pre-trained models with the domain-specific feature representation, and a meta-learning strategy that leverages generated virtual data and pre-trained models to learn the domain-invariant feature representation across multiple stains, thereby enhancing segmentation performance. Experimental results demonstrate that MSMTSeg achieves superior and robust performance, with mDSC of 0.836 and mIoU of 0.718 for multiple tissues under different stains, using only one annotated training sample for each stain. Our ablation study confirms the effectiveness of each component, positioning MSMTSeg ahead of classic advanced segmentation networks, recent few-shot segmentation methods, and unsupervised domain adaptation methods. In conclusion, our proposed few-shot cross-domain technology offers a feasible and cost-effective solution for multi-stained renal histology segmentation, providing convenient assistance to pathologists in clinical practice. The source code and conditionally accessible data are available at https://github.com/SnowRain510/MSMTSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ojbk发布了新的文献求助10
1秒前
pierchong完成签到,获得积分10
2秒前
lujiajia发布了新的文献求助10
2秒前
3秒前
3秒前
彭于晏应助denise采纳,获得10
4秒前
熏香澡牝完成签到,获得积分10
4秒前
苏博儿完成签到,获得积分10
4秒前
dada完成签到,获得积分10
5秒前
单薄新烟完成签到,获得积分10
6秒前
方稀发布了新的文献求助10
6秒前
背后的皮带完成签到 ,获得积分10
7秒前
烂漫的绝悟完成签到 ,获得积分10
8秒前
Lucas应助serendipity采纳,获得10
8秒前
9秒前
aaaaaa发布了新的文献求助10
10秒前
李健应助denise采纳,获得10
11秒前
美满的皮卡丘完成签到 ,获得积分10
12秒前
orixero应助Yolo采纳,获得10
12秒前
单薄新烟发布了新的文献求助10
13秒前
罗盘应助织诗成锦采纳,获得10
14秒前
蜗牛发布了新的文献求助10
16秒前
16秒前
16秒前
prosperp应助魏小梅采纳,获得10
17秒前
18秒前
可爱牛青发布了新的文献求助10
19秒前
19秒前
19秒前
Akim应助denise采纳,获得10
20秒前
123完成签到,获得积分10
20秒前
Rw发布了新的文献求助10
20秒前
serendipity发布了新的文献求助10
22秒前
aaaaaa完成签到,获得积分10
23秒前
24秒前
25秒前
Nano-Su发布了新的文献求助30
26秒前
无限安蕾发布了新的文献求助10
27秒前
Rw完成签到,获得积分10
28秒前
酷酷含烟发布了新的文献求助10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301976
求助须知:如何正确求助?哪些是违规求助? 2936548
关于积分的说明 8477880
捐赠科研通 2610232
什么是DOI,文献DOI怎么找? 1425053
科研通“疑难数据库(出版商)”最低求助积分说明 662271
邀请新用户注册赠送积分活动 646456