结合
连接器
有机太阳能电池
接受者
离解(化学)
材料科学
有机电子学
能量转换效率
卤素
光化学
化学
组合化学
计算机科学
光电子学
聚合物
有机化学
数学
烷基
电压
凝聚态物理
量子力学
晶体管
物理
操作系统
数学分析
作者
Yafei Ding,Waqar Ali Memon,Di Zhang,Yiwu Zhu,Shilong Xiong,Zhi Wang,Junfeng Liu,Heng Li,Hanjian Lai,Ming Shao,Feng He
标识
DOI:10.1002/anie.202403139
摘要
Abstract Designing new acceptors is critical for intrinsically stretchable organic solar cells (IS‐OSCs) with high efficiency and mechanical robustness. However, nearly all stretchable polymer acceptors exhibit limited efficiency and high‐performance small molecular acceptors are very brittle. In this regard, we select thienylene‐alkane‐thienylene (TAT) as the conjugate‐break linker and synthesize four dimerized acceptors by the regulation of connecting sites and halogen substitutions. It is found that the connecting sites and halogen substitutions considerably impact the overall electronic structures, aggregation behaviors, and charge transport properties. Benefiting from the optimization of the molecular structure, the dimerized acceptor exhibits rational phase separation within the blend films, which significantly facilitates exciton dissociation while effectively suppressing charge recombination processes. Consequently, FDY‐m‐TAT‐based rigid OSCs render the highest power conversion efficiency (PCE) of 18.07 % among reported acceptors containing conjugate‐break linker. Most importantly, FDY‐m‐TAT‐based IS‐OSCs achieve high PCE (14.29 %) and remarkable stretchability (crack‐onset strain [COS]=18.23 %), significantly surpassing Y6‐based counterpart (PCE=12.80 % and COS=8.50 %). To sum up, these findings demonstrate that dimerized acceptors containing conjugate‐break linkers have immense potential in developing highly efficient and mechanically robust OSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI