A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion

分割 联营 人工智能 计算机科学 特征(语言学) 计算机视觉 块(置换群论) 模式识别(心理学) 眼底(子宫) 眼科 数学 医学 几何学 哲学 语言学
作者
Jianyong Li,Ge Gao,Lei Yang,Yanhong Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108315-108315 被引量:15
标识
DOI:10.1016/j.compbiomed.2024.108315
摘要

The incidence of blinding eye diseases is highly correlated with changes in retinal morphology, and is clinically detected by segmenting retinal structures in fundus images. However, some existing methods have limitations in accurately segmenting thin vessels. In recent years, deep learning has made a splash in the medical image segmentation, but the lack of edge information representation due to repetitive convolution and pooling, limits the final segmentation accuracy. To this end, this paper proposes a pixel-level retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Here, a multiple dimension attention enhancement (MDAE) block is proposed to acquire more local edge information. Meanwhile, a deep guidance fusion (DGF) block and a cross-pooling semantic enhancement (CPSE) block are proposed simultaneously to acquire more global contexts. Further, the predictions of different decoding stages are learned and aggregated by an adaptive weight learner (AWL) unit to obtain the best weights for effective feature fusion. The experimental results on three public fundus image datasets show that proposed network could effectively enhance the segmentation performance on retinal blood vessels. In particular, the proposed method achieves AUC of 98.30%, 98.75%, and 98.71% on the DRIVE, CHASE_DB1, and STARE datasets, respectively, while the F1 score on all three datasets exceeded 83%. The source code of the proposed model is available at https://github.com/gegao310/VesselSeg-Pytorch-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐完成签到,获得积分10
1秒前
汉堡包应助滕擎采纳,获得10
3秒前
3秒前
小曹完成签到,获得积分10
4秒前
xiaobai发布了新的文献求助10
4秒前
一只龟龟完成签到,获得积分10
4秒前
5秒前
5秒前
昏睡的蟠桃举报whatever求助涉嫌违规
5秒前
星辰大海应助libra采纳,获得10
6秒前
哈哈哈完成签到 ,获得积分10
7秒前
cxx发布了新的文献求助10
8秒前
科研通AI2S应助xu采纳,获得10
8秒前
ash完成签到,获得积分10
8秒前
8秒前
orixero应助YCPing采纳,获得10
8秒前
半个榴莲完成签到,获得积分20
9秒前
科目三应助啊啊啊啊跃采纳,获得10
9秒前
9秒前
李爱国应助苏我入鹿采纳,获得10
9秒前
10秒前
CYcola发布了新的文献求助10
10秒前
10秒前
Akim应助彭于晏采纳,获得10
11秒前
11秒前
Hiyori发布了新的文献求助10
12秒前
ahaaa发布了新的文献求助10
12秒前
13秒前
可爱的函函应助小雨采纳,获得10
13秒前
mark2021完成签到,获得积分10
13秒前
13秒前
heth发布了新的文献求助20
13秒前
xiaobai完成签到,获得积分10
13秒前
fighting完成签到,获得积分10
13秒前
乔乔兔应助额额采纳,获得20
14秒前
14秒前
mickey发布了新的文献求助10
15秒前
十六发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180