A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion

分割 联营 人工智能 计算机科学 特征(语言学) 计算机视觉 块(置换群论) 模式识别(心理学) 眼底(子宫) 眼科 数学 医学 几何学 语言学 哲学
作者
Jianyong Li,Ge Gao,Lei Yang,Yanhong Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108315-108315 被引量:25
标识
DOI:10.1016/j.compbiomed.2024.108315
摘要

The incidence of blinding eye diseases is highly correlated with changes in retinal morphology, and is clinically detected by segmenting retinal structures in fundus images. However, some existing methods have limitations in accurately segmenting thin vessels. In recent years, deep learning has made a splash in the medical image segmentation, but the lack of edge information representation due to repetitive convolution and pooling, limits the final segmentation accuracy. To this end, this paper proposes a pixel-level retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Here, a multiple dimension attention enhancement (MDAE) block is proposed to acquire more local edge information. Meanwhile, a deep guidance fusion (DGF) block and a cross-pooling semantic enhancement (CPSE) block are proposed simultaneously to acquire more global contexts. Further, the predictions of different decoding stages are learned and aggregated by an adaptive weight learner (AWL) unit to obtain the best weights for effective feature fusion. The experimental results on three public fundus image datasets show that proposed network could effectively enhance the segmentation performance on retinal blood vessels. In particular, the proposed method achieves AUC of 98.30%, 98.75%, and 98.71% on the DRIVE, CHASE_DB1, and STARE datasets, respectively, while the F1 score on all three datasets exceeded 83%. The source code of the proposed model is available at https://github.com/gegao310/VesselSeg-Pytorch-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
myelin发布了新的文献求助10
1秒前
风格化橙发布了新的文献求助10
1秒前
彭于晏应助举人烧烤采纳,获得10
2秒前
科目三应助wxn采纳,获得10
2秒前
QC完成签到,获得积分10
3秒前
5秒前
赘婿应助暴躁的振家采纳,获得10
5秒前
6秒前
6秒前
8秒前
qh0305完成签到,获得积分10
8秒前
8秒前
烟花应助dichloro采纳,获得10
9秒前
YE发布了新的文献求助10
9秒前
蓝绝发布了新的文献求助20
9秒前
Mouser完成签到 ,获得积分10
10秒前
鸢尾发布了新的文献求助10
10秒前
二枫忆桑完成签到,获得积分10
10秒前
11秒前
佳佳完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
max发布了新的文献求助10
12秒前
fjnm完成签到,获得积分10
13秒前
Steve完成签到,获得积分10
13秒前
13秒前
欣喜的火龙果完成签到,获得积分10
13秒前
我可爱死学习了完成签到,获得积分20
13秒前
14秒前
16秒前
风格化橙发布了新的文献求助10
16秒前
awaibi发布了新的文献求助10
17秒前
48662发布了新的文献求助10
17秒前
爆米花应助奋斗金连采纳,获得10
18秒前
18秒前
welbeck完成签到,获得积分10
20秒前
悦己完成签到,获得积分10
20秒前
奕霖发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707