A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion

分割 联营 人工智能 计算机科学 特征(语言学) 计算机视觉 块(置换群论) 模式识别(心理学) 眼底(子宫) 眼科 数学 医学 几何学 哲学 语言学
作者
Jianyong Li,Ge Gao,Lei Yang,Yanhong Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108315-108315 被引量:9
标识
DOI:10.1016/j.compbiomed.2024.108315
摘要

The incidence of blinding eye diseases is highly correlated with changes in retinal morphology, and is clinically detected by segmenting retinal structures in fundus images. However, some existing methods have limitations in accurately segmenting thin vessels. In recent years, deep learning has made a splash in the medical image segmentation, but the lack of edge information representation due to repetitive convolution and pooling, limits the final segmentation accuracy. To this end, this paper proposes a pixel-level retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Here, a multiple dimension attention enhancement (MDAE) block is proposed to acquire more local edge information. Meanwhile, a deep guidance fusion (DGF) block and a cross-pooling semantic enhancement (CPSE) block are proposed simultaneously to acquire more global contexts. Further, the predictions of different decoding stages are learned and aggregated by an adaptive weight learner (AWL) unit to obtain the best weights for effective feature fusion. The experimental results on three public fundus image datasets show that proposed network could effectively enhance the segmentation performance on retinal blood vessels. In particular, the proposed method achieves AUC of 98.30%, 98.75%, and 98.71% on the DRIVE, CHASE_DB1, and STARE datasets, respectively, while the F1 score on all three datasets exceeded 83%. The source code of the proposed model is available at https://github.com/gegao310/VesselSeg-Pytorch-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SHIKAMARU完成签到,获得积分10
1秒前
杨尚朋完成签到,获得积分10
1秒前
1秒前
1秒前
Akim应助esdeath采纳,获得10
2秒前
科研通AI5应助Inahurry采纳,获得10
2秒前
小赵完成签到,获得积分10
3秒前
zhui发布了新的文献求助10
3秒前
3秒前
4秒前
sakurai应助Maxw采纳,获得10
4秒前
xiangxl发布了新的文献求助10
4秒前
4秒前
5秒前
UGO发布了新的文献求助10
5秒前
lh发布了新的文献求助10
5秒前
乐乐应助个性尔槐采纳,获得10
5秒前
希望天下0贩的0应助瑶625采纳,获得10
6秒前
tengli完成签到,获得积分20
6秒前
劲秉应助坚定迎天采纳,获得20
6秒前
桐桐应助杨枝甘露樱桃采纳,获得10
7秒前
搜集达人应助zhuzhu采纳,获得20
7秒前
LiShin发布了新的文献求助10
8秒前
末岛发布了新的文献求助10
8秒前
8秒前
coffee完成签到,获得积分10
9秒前
李来仪发布了新的文献求助10
9秒前
长安完成签到,获得积分10
10秒前
Hao完成签到,获得积分10
10秒前
JamesPei应助王小志采纳,获得10
10秒前
詹密完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
酷波er应助NEMO采纳,获得10
13秒前
13秒前
13秒前
13秒前
情怀应助shirleeyeahe采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794