A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion

分割 联营 人工智能 计算机科学 特征(语言学) 计算机视觉 块(置换群论) 模式识别(心理学) 眼底(子宫) 眼科 数学 医学 几何学 语言学 哲学
作者
Jianyong Li,Ge Gao,Lei Yang,Yanhong Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108315-108315 被引量:25
标识
DOI:10.1016/j.compbiomed.2024.108315
摘要

The incidence of blinding eye diseases is highly correlated with changes in retinal morphology, and is clinically detected by segmenting retinal structures in fundus images. However, some existing methods have limitations in accurately segmenting thin vessels. In recent years, deep learning has made a splash in the medical image segmentation, but the lack of edge information representation due to repetitive convolution and pooling, limits the final segmentation accuracy. To this end, this paper proposes a pixel-level retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Here, a multiple dimension attention enhancement (MDAE) block is proposed to acquire more local edge information. Meanwhile, a deep guidance fusion (DGF) block and a cross-pooling semantic enhancement (CPSE) block are proposed simultaneously to acquire more global contexts. Further, the predictions of different decoding stages are learned and aggregated by an adaptive weight learner (AWL) unit to obtain the best weights for effective feature fusion. The experimental results on three public fundus image datasets show that proposed network could effectively enhance the segmentation performance on retinal blood vessels. In particular, the proposed method achieves AUC of 98.30%, 98.75%, and 98.71% on the DRIVE, CHASE_DB1, and STARE datasets, respectively, while the F1 score on all three datasets exceeded 83%. The source code of the proposed model is available at https://github.com/gegao310/VesselSeg-Pytorch-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助学术秘籍采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
Criminology34应助活泼的觅云采纳,获得10
2秒前
2秒前
Jaynes完成签到 ,获得积分10
2秒前
xiaojie2024完成签到,获得积分10
2秒前
2秒前
3秒前
危险源发布了新的文献求助20
3秒前
wdlc完成签到,获得积分10
4秒前
宋阳晨完成签到,获得积分10
5秒前
摸鱼宝完成签到,获得积分10
5秒前
合适的代秋完成签到 ,获得积分10
5秒前
豌豆射手发布了新的文献求助10
6秒前
传奇3应助Gloria采纳,获得10
6秒前
浮游应助三水采纳,获得10
6秒前
xz发布了新的文献求助10
6秒前
6秒前
yjf发布了新的文献求助10
6秒前
6秒前
7秒前
lwq发布了新的文献求助10
7秒前
8秒前
WLL完成签到,获得积分10
8秒前
8秒前
CodeCraft应助自觉书易采纳,获得10
9秒前
烟花应助晶晶采纳,获得10
9秒前
Rubby应助xiaoming采纳,获得20
9秒前
危险源完成签到,获得积分20
9秒前
bkagyin应助莫名采纳,获得10
10秒前
sean晁烁发布了新的文献求助10
10秒前
爆米花应助slience采纳,获得10
10秒前
陶醉的夏槐完成签到,获得积分10
10秒前
10秒前
10秒前
laber应助生动的电灯胆采纳,获得50
10秒前
酶什么幺蛾子完成签到,获得积分10
11秒前
11秒前
12秒前
科研通AI6应助longhang采纳,获得10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587104
求助须知:如何正确求助?哪些是违规求助? 4670242
关于积分的说明 14781891
捐赠科研通 4621991
什么是DOI,文献DOI怎么找? 2531119
邀请新用户注册赠送积分活动 1499924
关于科研通互助平台的介绍 1468015