A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion

分割 联营 人工智能 计算机科学 特征(语言学) 计算机视觉 块(置换群论) 模式识别(心理学) 眼底(子宫) 眼科 数学 医学 几何学 语言学 哲学
作者
Jianyong Li,Ge Gao,Lei Yang,Yanhong Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108315-108315 被引量:15
标识
DOI:10.1016/j.compbiomed.2024.108315
摘要

The incidence of blinding eye diseases is highly correlated with changes in retinal morphology, and is clinically detected by segmenting retinal structures in fundus images. However, some existing methods have limitations in accurately segmenting thin vessels. In recent years, deep learning has made a splash in the medical image segmentation, but the lack of edge information representation due to repetitive convolution and pooling, limits the final segmentation accuracy. To this end, this paper proposes a pixel-level retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Here, a multiple dimension attention enhancement (MDAE) block is proposed to acquire more local edge information. Meanwhile, a deep guidance fusion (DGF) block and a cross-pooling semantic enhancement (CPSE) block are proposed simultaneously to acquire more global contexts. Further, the predictions of different decoding stages are learned and aggregated by an adaptive weight learner (AWL) unit to obtain the best weights for effective feature fusion. The experimental results on three public fundus image datasets show that proposed network could effectively enhance the segmentation performance on retinal blood vessels. In particular, the proposed method achieves AUC of 98.30%, 98.75%, and 98.71% on the DRIVE, CHASE_DB1, and STARE datasets, respectively, while the F1 score on all three datasets exceeded 83%. The source code of the proposed model is available at https://github.com/gegao310/VesselSeg-Pytorch-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
walu完成签到,获得积分10
刚刚
彩色世倌发布了新的文献求助10
刚刚
Hohaha发布了新的文献求助10
1秒前
2秒前
2秒前
max完成签到,获得积分10
2秒前
快乐旭尧完成签到,获得积分10
5秒前
LXY171发布了新的文献求助20
5秒前
walu发布了新的文献求助20
5秒前
丁浩伦应助小火锅采纳,获得10
5秒前
QQ发布了新的文献求助10
6秒前
Hazel发布了新的文献求助10
8秒前
11111完成签到,获得积分10
8秒前
小蘑菇应助颜林林采纳,获得10
8秒前
小马完成签到,获得积分10
9秒前
顾矜应助科研通管家采纳,获得10
10秒前
不想干活应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
Zz应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得30
11秒前
科研通AI6应助madmax采纳,获得30
11秒前
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
monitor完成签到,获得积分20
11秒前
11秒前
852应助科研通管家采纳,获得10
12秒前
fifteen应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
活泼的问旋完成签到,获得积分10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888