静水压下水声吸声材料研究现状

静水压力 水下 声学 声纳 吸收(声学) 声压 流体静力平衡 计算机科学 海洋工程 环境科学 工程类 地质学 物理 机械 海洋学 量子力学
作者
Yejin Wei,Honggang Zhao,Yang Wang,Jie Zhong,Yao Sun,Zhoufu Zheng,Haibin Yang,Jihong Wen
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:69 (17): 2368-2379
标识
DOI:10.1360/tb-2023-1070
摘要

With the rapid technological advancements, sonar technology has made remarkable progress in recent years. This advancement not only facilitates the advancement of sonar technology, but also imposes stricter requirements on the stealth performance of underwater equipment, such as submarines. Consequently, hydroacoustic absorbing materials (HAMs) have emerged as indispensable tools for achieving acoustic stealth in such equipment. Extensive research has been conducted on HAMs in recent years. However, due to the faster propagation speed and longer wavelength of underwater sound waves compared to airborne sound, effective sound absorption becomes increasingly challenging. Additionally, considering the higher density of water, sound absorbing materials must be able to withstand high-level pressure, particularly in deep-water environments. These factors pose significant challenges in designing efficient HAMs. Previous studies have demonstrated that hydrostatic pressure has a significant impact on the acoustic properties of HAMs. Under hydrostatic pressure, the matrix parameters of HAMs undergo changes, and the internal acoustic structure is squeezed and deformed. This specifically leads to reduced sound absorption in low frequencies. Currently, the design of low-frequency and wideband HAMs under high hydrostatic pressure remains a challenging task in this field. Therefore, further investigation is needed to analyze and optimize sound absorption. This review provides an extensive overview of the current research status on analysis methods for acoustic absorption in HAMs under hydrostatic pressure. The focus is primarily on theoretical and experimental analysis methods. Additionally, this review summarizes the sound absorption mechanisms of HAMs and examines how hydrostatic pressure impacts these mechanisms. Specifically, under hydrostatic pressure, the damping dissipation effects caused by internal friction and relaxation processes within the matrix material of HAMs are diminished. Furthermore, compression deformation weakens resonance effects in acoustic structures, such as cavities or local resonances, ultimately leading to a decrease in the sound absorption performance of HAMs. This review further summarizes the design considerations for existing HAMs. Regarding the matrix material, enhanced pressure resistance and sound absorption performance can be achieved through a combination of diverse materials and specialized structures. In terms of acoustic structure, superior pressure resistance and sound absorption capabilities can be achieved by incorporating reinforced structures that exhibit increased resistance to hydrostatic pressure or by employing innovative metamaterial designs. Finally, the review presents a forward-looking perspective on the research trends in HAMs under hydrostatic pressure. Currently, a significant challenge remains in balancing hydrostatic pressure resistance and low-frequency broadband sound absorption. There is a pressing need for more meticulous designs of acoustic models suitable for high-pressure conditions exceeding 4.5 MPa. These unresolved questions represent crucial areas for future investigations. It is anticipated that this review will provide novel insights into the design of materials with sound absorption capabilities under hydrostatic pressure, paving the way for future advancements in this field.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
包容的剑发布了新的文献求助10
2秒前
SS驳回了ding应助
2秒前
星辰大海应助ZY采纳,获得10
2秒前
丘比特应助鲜艳的棒棒糖采纳,获得10
2秒前
3秒前
4秒前
曾经耳机完成签到 ,获得积分10
4秒前
rain完成签到 ,获得积分10
4秒前
讲道理的卡卡完成签到 ,获得积分10
4秒前
水獭完成签到,获得积分10
4秒前
5秒前
5秒前
快乐滑板完成签到,获得积分0
5秒前
白小白发布了新的文献求助10
6秒前
陈淑玲完成签到,获得积分10
6秒前
7秒前
小刺发布了新的文献求助10
7秒前
机灵安白完成签到 ,获得积分10
8秒前
科研通AI5应助夏夏采纳,获得10
9秒前
酷波er应助夏夏采纳,获得10
9秒前
NexusExplorer应助夏夏采纳,获得10
9秒前
科研通AI2S应助夏夏采纳,获得10
9秒前
积极冷霜发布了新的文献求助10
9秒前
9秒前
Ava应助夏夏采纳,获得10
9秒前
科目三应助夏夏采纳,获得10
9秒前
丘比特应助夏夏采纳,获得10
9秒前
小马甲应助夏夏采纳,获得10
9秒前
9秒前
wary发布了新的文献求助10
10秒前
Genius完成签到,获得积分10
10秒前
张掖发布了新的文献求助10
12秒前
金虎完成签到,获得积分10
12秒前
小董不懂完成签到,获得积分10
12秒前
大晨发布了新的文献求助10
12秒前
斯文败类应助Liu采纳,获得10
13秒前
李爱国应助脆弱的仙人掌采纳,获得10
14秒前
打打应助张自信采纳,获得10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762