静水压下水声吸声材料研究现状

静水压力 水下 声学 声纳 吸收(声学) 声压 流体静力平衡 计算机科学 海洋工程 环境科学 工程类 地质学 物理 机械 量子力学 海洋学
作者
Yejin Wei,Honggang Zhao,Yang Wang,Jie Zhong,Yao Sun,Zhoufu Zheng,Haibin Yang,Jihong Wen
出处
期刊:Kexue tongbao [Science China Press]
卷期号:69 (17): 2368-2379
标识
DOI:10.1360/tb-2023-1070
摘要

With the rapid technological advancements, sonar technology has made remarkable progress in recent years. This advancement not only facilitates the advancement of sonar technology, but also imposes stricter requirements on the stealth performance of underwater equipment, such as submarines. Consequently, hydroacoustic absorbing materials (HAMs) have emerged as indispensable tools for achieving acoustic stealth in such equipment. Extensive research has been conducted on HAMs in recent years. However, due to the faster propagation speed and longer wavelength of underwater sound waves compared to airborne sound, effective sound absorption becomes increasingly challenging. Additionally, considering the higher density of water, sound absorbing materials must be able to withstand high-level pressure, particularly in deep-water environments. These factors pose significant challenges in designing efficient HAMs. Previous studies have demonstrated that hydrostatic pressure has a significant impact on the acoustic properties of HAMs. Under hydrostatic pressure, the matrix parameters of HAMs undergo changes, and the internal acoustic structure is squeezed and deformed. This specifically leads to reduced sound absorption in low frequencies. Currently, the design of low-frequency and wideband HAMs under high hydrostatic pressure remains a challenging task in this field. Therefore, further investigation is needed to analyze and optimize sound absorption. This review provides an extensive overview of the current research status on analysis methods for acoustic absorption in HAMs under hydrostatic pressure. The focus is primarily on theoretical and experimental analysis methods. Additionally, this review summarizes the sound absorption mechanisms of HAMs and examines how hydrostatic pressure impacts these mechanisms. Specifically, under hydrostatic pressure, the damping dissipation effects caused by internal friction and relaxation processes within the matrix material of HAMs are diminished. Furthermore, compression deformation weakens resonance effects in acoustic structures, such as cavities or local resonances, ultimately leading to a decrease in the sound absorption performance of HAMs. This review further summarizes the design considerations for existing HAMs. Regarding the matrix material, enhanced pressure resistance and sound absorption performance can be achieved through a combination of diverse materials and specialized structures. In terms of acoustic structure, superior pressure resistance and sound absorption capabilities can be achieved by incorporating reinforced structures that exhibit increased resistance to hydrostatic pressure or by employing innovative metamaterial designs. Finally, the review presents a forward-looking perspective on the research trends in HAMs under hydrostatic pressure. Currently, a significant challenge remains in balancing hydrostatic pressure resistance and low-frequency broadband sound absorption. There is a pressing need for more meticulous designs of acoustic models suitable for high-pressure conditions exceeding 4.5 MPa. These unresolved questions represent crucial areas for future investigations. It is anticipated that this review will provide novel insights into the design of materials with sound absorption capabilities under hydrostatic pressure, paving the way for future advancements in this field.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shangxinyu完成签到,获得积分10
1秒前
友好的晓亦完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
鳄鱼发布了新的文献求助10
3秒前
锦鲤禾发布了新的文献求助10
3秒前
4秒前
头秃科研人完成签到,获得积分10
4秒前
4秒前
哈哈哈完成签到,获得积分10
4秒前
4秒前
科研通AI6应助lzy采纳,获得10
5秒前
小杭76应助失眠螃蟹采纳,获得10
5秒前
6秒前
朱大大666发布了新的文献求助10
6秒前
悦耳可燕完成签到,获得积分10
7秒前
orixero应助例外采纳,获得30
7秒前
科目三应助小月月采纳,获得10
7秒前
7秒前
浮游应助敏感代云采纳,获得10
7秒前
wfwl发布了新的文献求助10
8秒前
尊敬若云发布了新的文献求助10
9秒前
宇文千万发布了新的文献求助10
9秒前
goKR发布了新的文献求助10
9秒前
9秒前
wu发布了新的文献求助10
9秒前
星星炒蛋完成签到,获得积分20
10秒前
JunChou发布了新的文献求助10
10秒前
12秒前
12秒前
深情安青应助季夏采纳,获得10
12秒前
科研通AI5应助程蒽采纳,获得10
13秒前
NJU_Chanwell发布了新的文献求助10
13秒前
慕青应助77采纳,获得10
14秒前
14秒前
干净士晋发布了新的文献求助10
14秒前
小二郎应助呼呼采纳,获得10
15秒前
wfwl完成签到,获得积分10
15秒前
顾矜应助lhz采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003803
求助须知:如何正确求助?哪些是违规求助? 4248286
关于积分的说明 13236206
捐赠科研通 4047371
什么是DOI,文献DOI怎么找? 2214293
邀请新用户注册赠送积分活动 1224391
关于科研通互助平台的介绍 1144721