静水压下水声吸声材料研究现状

静水压力 水下 声学 声纳 吸收(声学) 声压 流体静力平衡 计算机科学 海洋工程 环境科学 工程类 地质学 物理 机械 量子力学 海洋学
作者
Yejin Wei,Honggang Zhao,Yang Wang,Jie Zhong,Yao Sun,Zhoufu Zheng,Haibin Yang,Jihong Wen
出处
期刊:Kexue tongbao [Science China Press]
卷期号:69 (17): 2368-2379
标识
DOI:10.1360/tb-2023-1070
摘要

With the rapid technological advancements, sonar technology has made remarkable progress in recent years. This advancement not only facilitates the advancement of sonar technology, but also imposes stricter requirements on the stealth performance of underwater equipment, such as submarines. Consequently, hydroacoustic absorbing materials (HAMs) have emerged as indispensable tools for achieving acoustic stealth in such equipment. Extensive research has been conducted on HAMs in recent years. However, due to the faster propagation speed and longer wavelength of underwater sound waves compared to airborne sound, effective sound absorption becomes increasingly challenging. Additionally, considering the higher density of water, sound absorbing materials must be able to withstand high-level pressure, particularly in deep-water environments. These factors pose significant challenges in designing efficient HAMs. Previous studies have demonstrated that hydrostatic pressure has a significant impact on the acoustic properties of HAMs. Under hydrostatic pressure, the matrix parameters of HAMs undergo changes, and the internal acoustic structure is squeezed and deformed. This specifically leads to reduced sound absorption in low frequencies. Currently, the design of low-frequency and wideband HAMs under high hydrostatic pressure remains a challenging task in this field. Therefore, further investigation is needed to analyze and optimize sound absorption. This review provides an extensive overview of the current research status on analysis methods for acoustic absorption in HAMs under hydrostatic pressure. The focus is primarily on theoretical and experimental analysis methods. Additionally, this review summarizes the sound absorption mechanisms of HAMs and examines how hydrostatic pressure impacts these mechanisms. Specifically, under hydrostatic pressure, the damping dissipation effects caused by internal friction and relaxation processes within the matrix material of HAMs are diminished. Furthermore, compression deformation weakens resonance effects in acoustic structures, such as cavities or local resonances, ultimately leading to a decrease in the sound absorption performance of HAMs. This review further summarizes the design considerations for existing HAMs. Regarding the matrix material, enhanced pressure resistance and sound absorption performance can be achieved through a combination of diverse materials and specialized structures. In terms of acoustic structure, superior pressure resistance and sound absorption capabilities can be achieved by incorporating reinforced structures that exhibit increased resistance to hydrostatic pressure or by employing innovative metamaterial designs. Finally, the review presents a forward-looking perspective on the research trends in HAMs under hydrostatic pressure. Currently, a significant challenge remains in balancing hydrostatic pressure resistance and low-frequency broadband sound absorption. There is a pressing need for more meticulous designs of acoustic models suitable for high-pressure conditions exceeding 4.5 MPa. These unresolved questions represent crucial areas for future investigations. It is anticipated that this review will provide novel insights into the design of materials with sound absorption capabilities under hydrostatic pressure, paving the way for future advancements in this field.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haki完成签到,获得积分10
刚刚
刚刚
重要问筠完成签到,获得积分10
刚刚
AronHUANG完成签到,获得积分10
刚刚
for_abSCI完成签到,获得积分10
1秒前
健壮的凝冬完成签到 ,获得积分10
1秒前
2秒前
香蕉觅云应助拌拌采纳,获得10
2秒前
Ding应助维时采纳,获得10
2秒前
千空发布了新的文献求助10
3秒前
怕孤单的若颜完成签到,获得积分10
3秒前
3秒前
4秒前
15297657686完成签到,获得积分10
4秒前
Max完成签到,获得积分10
5秒前
SherlockJia完成签到,获得积分10
5秒前
callmecjh完成签到,获得积分10
6秒前
5123完成签到,获得积分10
6秒前
阿良完成签到,获得积分10
6秒前
伍六七完成签到,获得积分10
7秒前
YOYOYO完成签到,获得积分10
7秒前
7秒前
彳亍完成签到,获得积分10
7秒前
MRIFFF完成签到,获得积分10
7秒前
Linda完成签到 ,获得积分10
8秒前
孙燕应助赵宇宙采纳,获得10
8秒前
小圆子完成签到,获得积分10
8秒前
8秒前
富强民主发布了新的文献求助20
8秒前
9秒前
burno1112完成签到,获得积分10
10秒前
121完成签到,获得积分10
10秒前
忧郁小蘑菇完成签到,获得积分10
10秒前
今何在完成签到,获得积分10
10秒前
TTT完成签到,获得积分10
11秒前
CC完成签到 ,获得积分10
11秒前
ZJZALLEN完成签到 ,获得积分10
11秒前
丁昆发布了新的文献求助10
11秒前
小马甲应助冷傲迎梦采纳,获得10
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044