MAMILNet: advancing precision oncology with multi-scale attentional multi-instance learning for whole slide image analysis

精确肿瘤学 比例(比率) 计算机科学 医学物理学 精密医学 医学 人工智能 病理 地图学 地理
作者
Q. Daniel Wang,Qiu Bi,Linhao Qu,Yuchen Deng,Xianhong Wang,Yijun Zheng,Chenrong Li,Qingyin Meng,Kun Miao
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1275769
摘要

Background Whole Slide Image (WSI) analysis, driven by deep learning algorithms, has the potential to revolutionize tumor detection, classification, and treatment response prediction. However, challenges persist, such as limited model generalizability across various cancer types, the labor-intensive nature of patch-level annotation, and the necessity of integrating multi-magnification information to attain a comprehensive understanding of pathological patterns. Methods In response to these challenges, we introduce MAMILNet, an innovative multi-scale attentional multi-instance learning framework for WSI analysis. The incorporation of attention mechanisms into MAMILNet contributes to its exceptional generalizability across diverse cancer types and prediction tasks. This model considers whole slides as “bags” and individual patches as “instances.” By adopting this approach, MAMILNet effectively eliminates the requirement for intricate patch-level labeling, significantly reducing the manual workload for pathologists. To enhance prediction accuracy, the model employs a multi-scale “consultation” strategy, facilitating the aggregation of test outcomes from various magnifications. Results Our assessment of MAMILNet encompasses 1171 cases encompassing a wide range of cancer types, showcasing its effectiveness in predicting complex tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and an Accuracy of 0.7341. Conclusion The outcomes of this study underscore the potential of MAMILNet in driving the advancement of precision medicine and individualized treatment planning within the field of oncology. By effectively addressing challenges related to model generalization, annotation workload, and multi-magnification integration, MAMILNet shows promise in enhancing healthcare outcomes for cancer patients. The framework’s success in accurately detecting breast tumors, diagnosing lung cancer types, and predicting ovarian cancer therapy responses highlights its significant contribution to the field and paves the way for improved patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伶俐雅柏完成签到,获得积分10
刚刚
刚刚
刚刚
优优的iu完成签到,获得积分10
1秒前
俭朴晓凡发布了新的文献求助10
1秒前
元谷雪发布了新的文献求助10
1秒前
chompa完成签到,获得积分10
1秒前
小黄完成签到,获得积分10
1秒前
AAAAA应助阿鑫采纳,获得10
1秒前
波西米亚完成签到,获得积分10
1秒前
1秒前
打打应助Ryan采纳,获得10
2秒前
程程程完成签到,获得积分10
2秒前
雪影完成签到 ,获得积分10
2秒前
tdtk发布了新的文献求助10
2秒前
3秒前
3秒前
萍水相逢发布了新的文献求助10
3秒前
sikai完成签到,获得积分20
3秒前
Lee完成签到 ,获得积分10
4秒前
3242晶完成签到,获得积分10
4秒前
卷毛完成签到,获得积分10
4秒前
Akim应助jie采纳,获得10
4秒前
make发布了新的文献求助10
4秒前
菠菜发布了新的文献求助30
4秒前
西西发布了新的文献求助10
4秒前
光亮熠彤完成签到 ,获得积分20
5秒前
5秒前
张昭蓉完成签到,获得积分10
5秒前
哈噗咻发布了新的文献求助10
6秒前
pengpeng发布了新的文献求助10
6秒前
宁作我完成签到 ,获得积分10
6秒前
张雅露完成签到,获得积分10
6秒前
Anoxia完成签到,获得积分10
6秒前
平淡思雁发布了新的文献求助10
6秒前
kong应助遮宁采纳,获得10
7秒前
LIUYC完成签到,获得积分10
7秒前
张姐完成签到,获得积分10
7秒前
shouyu29发布了新的文献求助10
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885