亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MAMILNet: advancing precision oncology with multi-scale attentional multi-instance learning for whole slide image analysis

精确肿瘤学 比例(比率) 计算机科学 医学物理学 精密医学 医学 人工智能 病理 地图学 地理
作者
Q. Daniel Wang,Qiu Bi,Linhao Qu,Yuchen Deng,Xianhong Wang,Yijun Zheng,Chenrong Li,Qingyin Meng,Kun Miao
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1275769
摘要

Background Whole Slide Image (WSI) analysis, driven by deep learning algorithms, has the potential to revolutionize tumor detection, classification, and treatment response prediction. However, challenges persist, such as limited model generalizability across various cancer types, the labor-intensive nature of patch-level annotation, and the necessity of integrating multi-magnification information to attain a comprehensive understanding of pathological patterns. Methods In response to these challenges, we introduce MAMILNet, an innovative multi-scale attentional multi-instance learning framework for WSI analysis. The incorporation of attention mechanisms into MAMILNet contributes to its exceptional generalizability across diverse cancer types and prediction tasks. This model considers whole slides as “bags” and individual patches as “instances.” By adopting this approach, MAMILNet effectively eliminates the requirement for intricate patch-level labeling, significantly reducing the manual workload for pathologists. To enhance prediction accuracy, the model employs a multi-scale “consultation” strategy, facilitating the aggregation of test outcomes from various magnifications. Results Our assessment of MAMILNet encompasses 1171 cases encompassing a wide range of cancer types, showcasing its effectiveness in predicting complex tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and an Accuracy of 0.7341. Conclusion The outcomes of this study underscore the potential of MAMILNet in driving the advancement of precision medicine and individualized treatment planning within the field of oncology. By effectively addressing challenges related to model generalization, annotation workload, and multi-magnification integration, MAMILNet shows promise in enhancing healthcare outcomes for cancer patients. The framework’s success in accurately detecting breast tumors, diagnosing lung cancer types, and predicting ovarian cancer therapy responses highlights its significant contribution to the field and paves the way for improved patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄咖啡豆完成签到 ,获得积分10
28秒前
alanbike完成签到,获得积分10
31秒前
38秒前
48秒前
wynne313完成签到 ,获得积分10
1分钟前
1分钟前
健壮灰狼发布了新的文献求助10
1分钟前
wearelulu完成签到,获得积分10
1分钟前
荒野牧人发布了新的文献求助200
1分钟前
PYF完成签到,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
吃的饱饱呀完成签到 ,获得积分10
1分钟前
1分钟前
栖风完成签到,获得积分10
1分钟前
2分钟前
2分钟前
liuerye发布了新的文献求助10
2分钟前
2分钟前
nk完成签到 ,获得积分10
2分钟前
鹅鹅鹅饿完成签到 ,获得积分10
2分钟前
3分钟前
田様应助liuerye采纳,获得10
3分钟前
3分钟前
3分钟前
今后应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
月涵完成签到 ,获得积分10
3分钟前
超帅的龙猫完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
MrRen完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534231
求助须知:如何正确求助?哪些是违规求助? 4622287
关于积分的说明 14582414
捐赠科研通 4562518
什么是DOI,文献DOI怎么找? 2500193
邀请新用户注册赠送积分活动 1479774
关于科研通互助平台的介绍 1450914