MAMILNet: advancing precision oncology with multi-scale attentional multi-instance learning for whole slide image analysis

精确肿瘤学 比例(比率) 计算机科学 医学物理学 精密医学 医学 人工智能 病理 地图学 地理
作者
Q. Daniel Wang,Qiu Bi,Linhao Qu,Yuchen Deng,Xianhong Wang,Yijun Zheng,Chenrong Li,Qingyin Meng,Kun Miao
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1275769
摘要

Background Whole Slide Image (WSI) analysis, driven by deep learning algorithms, has the potential to revolutionize tumor detection, classification, and treatment response prediction. However, challenges persist, such as limited model generalizability across various cancer types, the labor-intensive nature of patch-level annotation, and the necessity of integrating multi-magnification information to attain a comprehensive understanding of pathological patterns. Methods In response to these challenges, we introduce MAMILNet, an innovative multi-scale attentional multi-instance learning framework for WSI analysis. The incorporation of attention mechanisms into MAMILNet contributes to its exceptional generalizability across diverse cancer types and prediction tasks. This model considers whole slides as “bags” and individual patches as “instances.” By adopting this approach, MAMILNet effectively eliminates the requirement for intricate patch-level labeling, significantly reducing the manual workload for pathologists. To enhance prediction accuracy, the model employs a multi-scale “consultation” strategy, facilitating the aggregation of test outcomes from various magnifications. Results Our assessment of MAMILNet encompasses 1171 cases encompassing a wide range of cancer types, showcasing its effectiveness in predicting complex tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and an Accuracy of 0.7341. Conclusion The outcomes of this study underscore the potential of MAMILNet in driving the advancement of precision medicine and individualized treatment planning within the field of oncology. By effectively addressing challenges related to model generalization, annotation workload, and multi-magnification integration, MAMILNet shows promise in enhancing healthcare outcomes for cancer patients. The framework’s success in accurately detecting breast tumors, diagnosing lung cancer types, and predicting ovarian cancer therapy responses highlights its significant contribution to the field and paves the way for improved patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rx发布了新的文献求助10
1秒前
Owen应助哈哈公子25采纳,获得10
2秒前
柯一一应助flysky120采纳,获得10
2秒前
zy发布了新的文献求助50
3秒前
3秒前
ZhijunXiang发布了新的文献求助10
3秒前
王美美完成签到,获得积分20
4秒前
4秒前
向日葵完成签到,获得积分10
4秒前
5秒前
fenmiao发布了新的文献求助10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
yookia应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
yookia应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
Tina_Li应助科研通管家采纳,获得30
7秒前
7秒前
大脑袋应助科研通管家采纳,获得30
7秒前
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
疯狂的虔发布了新的文献求助10
7秒前
7秒前
7秒前
yookia应助科研通管家采纳,获得20
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
慕青应助热心小松鼠采纳,获得10
8秒前
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
无花果应助热心小松鼠采纳,获得10
8秒前
8秒前
英姑应助热心小松鼠采纳,获得10
8秒前
GOD伟完成签到,获得积分10
8秒前
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429