亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MAMILNet: advancing precision oncology with multi-scale attentional multi-instance learning for whole slide image analysis

精确肿瘤学 比例(比率) 计算机科学 医学物理学 精密医学 医学 人工智能 病理 地图学 地理
作者
Q. Daniel Wang,Qiu Bi,Linhao Qu,Yuchen Deng,Wang Xian-hong,Yijuan Zheng,Chenrong Li,Qingyin Meng,Kun Miao
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1275769
摘要

Background Whole Slide Image (WSI) analysis, driven by deep learning algorithms, has the potential to revolutionize tumor detection, classification, and treatment response prediction. However, challenges persist, such as limited model generalizability across various cancer types, the labor-intensive nature of patch-level annotation, and the necessity of integrating multi-magnification information to attain a comprehensive understanding of pathological patterns. Methods In response to these challenges, we introduce MAMILNet, an innovative multi-scale attentional multi-instance learning framework for WSI analysis. The incorporation of attention mechanisms into MAMILNet contributes to its exceptional generalizability across diverse cancer types and prediction tasks. This model considers whole slides as “bags” and individual patches as “instances.” By adopting this approach, MAMILNet effectively eliminates the requirement for intricate patch-level labeling, significantly reducing the manual workload for pathologists. To enhance prediction accuracy, the model employs a multi-scale “consultation” strategy, facilitating the aggregation of test outcomes from various magnifications. Results Our assessment of MAMILNet encompasses 1171 cases encompassing a wide range of cancer types, showcasing its effectiveness in predicting complex tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and an Accuracy of 0.7341. Conclusion The outcomes of this study underscore the potential of MAMILNet in driving the advancement of precision medicine and individualized treatment planning within the field of oncology. By effectively addressing challenges related to model generalization, annotation workload, and multi-magnification integration, MAMILNet shows promise in enhancing healthcare outcomes for cancer patients. The framework’s success in accurately detecting breast tumors, diagnosing lung cancer types, and predicting ovarian cancer therapy responses highlights its significant contribution to the field and paves the way for improved patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木槿完成签到 ,获得积分10
5秒前
6秒前
8秒前
科研任发布了新的文献求助10
11秒前
12秒前
Sandy完成签到 ,获得积分10
13秒前
赘婿应助凶狠的妙柏采纳,获得10
16秒前
科研通AI2S应助plateauman采纳,获得10
17秒前
18秒前
爱学习的YY完成签到 ,获得积分10
20秒前
Hello应助阿良采纳,获得10
20秒前
大个应助生产队的建设者采纳,获得10
21秒前
赫青亦完成签到 ,获得积分10
22秒前
wy发布了新的文献求助10
23秒前
科研任完成签到,获得积分10
24秒前
25秒前
凶狠的妙柏完成签到,获得积分10
27秒前
30秒前
研友_VZG7GZ应助renrunxue采纳,获得10
30秒前
h7525yanghan完成签到 ,获得积分20
31秒前
山河表里发布了新的文献求助10
34秒前
完美世界应助wy采纳,获得10
36秒前
renrunxue完成签到,获得积分10
43秒前
44秒前
qqq完成签到,获得积分10
48秒前
renrunxue发布了新的文献求助10
49秒前
山河表里完成签到,获得积分10
50秒前
不想看文献完成签到 ,获得积分10
51秒前
老张完成签到 ,获得积分10
52秒前
Jasper应助大小姐采纳,获得10
54秒前
monned完成签到 ,获得积分10
56秒前
57秒前
Magali应助科研通管家采纳,获得60
58秒前
大个应助科研通管家采纳,获得10
58秒前
左手青春完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
zxr发布了新的文献求助10
1分钟前
大个应助弥生采纳,获得10
1分钟前
大小姐发布了新的文献求助10
1分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
大理州人民医院2021上半年(卫生类)人员招聘试题及解析 1000
2023云南大理州事业单位招聘专业技术人员医疗岗162人笔试历年典型考题及考点剖析附带答案详解 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3114308
求助须知:如何正确求助?哪些是违规求助? 2764608
关于积分的说明 7678871
捐赠科研通 2419674
什么是DOI,文献DOI怎么找? 1284695
科研通“疑难数据库(出版商)”最低求助积分说明 619771
版权声明 599711