A Survey of Multi-modal Knowledge Graphs: Technologies and Trends

计算机科学 情态动词 知识图 数据科学 情报检索 化学 高分子化学
作者
Wanying Liang,Pasquale De Meo,Yong Tang,Jia Zhu
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (11): 1-41 被引量:4
标识
DOI:10.1145/3656579
摘要

In recent years, Knowledge Graphs (KGs) have played a crucial role in the development of advanced knowledge-intensive applications, such as recommender systems and semantic search. However, the human sensory system is inherently multi-modal, as objects around us are often represented by a combination of multiple signals, such as visual and textual. Consequently, Multi-modal Knowledge Graphs (MMKGs), which combine structured knowledge representation with multiple modalities, represent a powerful extension of KGs. Although MMKGs can handle certain types of tasks (e.g., visual query answering) or queries that standard KGs cannot process, and they can effectively tackle some standard problems (e.g., entity alignment), we lack a widely accepted definition of MMKG. In this survey, we provide a rigorous definition of MMKGs along with a classification scheme based on how existing approaches address four fundamental challenges: representation, fusion, alignment, and translation, which are crucial to improving an MMKG. Our classification scheme is flexible and allows for easy incorporation of new approaches, as well as a comparison of two approaches in terms of how they address one of the fundamental challenges mentioned above. As the first comprehensive survey of MMKG, this article aims at inspiring and provide a reference for relevant researchers in the field of Artificial Intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ldy完成签到,获得积分10
1秒前
1秒前
尊敬的小土豆完成签到,获得积分10
1秒前
呆梨医生完成签到,获得积分10
1秒前
wen完成签到,获得积分10
2秒前
2秒前
雷雪发布了新的文献求助10
3秒前
carza完成签到,获得积分10
4秒前
4秒前
小寇发布了新的文献求助10
4秒前
小博士完成签到,获得积分20
5秒前
5秒前
风中的博完成签到,获得积分10
6秒前
6秒前
wanci应助刻苦傲安采纳,获得10
6秒前
洁净的汽车完成签到 ,获得积分10
6秒前
笑点低的冬瓜关注了科研通微信公众号
6秒前
SciGPT应助黑米粥采纳,获得10
6秒前
7秒前
大意的绿草完成签到,获得积分10
8秒前
成就丸子完成签到 ,获得积分10
9秒前
Keeee关注了科研通微信公众号
10秒前
风中的博发布了新的文献求助10
11秒前
rxy发布了新的文献求助10
11秒前
以戈发布了新的文献求助10
12秒前
清萍红檀完成签到,获得积分10
12秒前
酷酷珠发布了新的文献求助10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得30
13秒前
田様应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441097
求助须知:如何正确求助?哪些是违规求助? 3037459
关于积分的说明 8969152
捐赠科研通 2726008
什么是DOI,文献DOI怎么找? 1495147
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687922