SKHASH: A Python Package for Computing Earthquake Focal Mechanisms

Python(编程语言) 地质学 地震学 计算机科学 程序设计语言 计算机图形学(图像)
作者
Robert J. Skoumal,Jeanne L. Hardebeck,Peter M. Shearer
出处
期刊:Seismological Research Letters [Seismological Society]
标识
DOI:10.1785/0220230329
摘要

Abstract We introduce a Python package for computing focal mechanism solutions. This algorithm, which we refer to as SKHASH, is largely based on the HASH algorithm originally written in Fortran over 20 yr ago. HASH innovated the use of suites of solutions, spanning the expected errors in polarities and takeoff angles, to estimate focal mechanism uncertainty. SKHASH benefits from new features with flexible input formats and allows users to take advantage of recent advances in constraining focal mechanisms for small magnitude or poorly recorded earthquakes. The 3D locations of earthquakes and the velocity models used are varied when finding acceptable solutions. As a result, source–receiver azimuths are reflective of errors from the earthquake locations and velocity models, in addition to the takeoff angles. Users can consider weighted P-wave first-motion polarities derived from traditional or machine-learning picks, cross-correlation consensus, and/or imputation techniques using SKHASH. Focal mechanism solutions can also be further constrained using traditional, machine learning, and/or cross-correlation consensus S/P amplitude ratios. With improved reporting of individual and collective P polarity and S/P amplitude misfits, users can better evaluate the success of the solutions and the quality of the measurements. The reporting also makes it easier to identify potential issues with metadata, including incorrectly reported station polarity reversals. In addition, by leveraging vectorized operations, taking advantage of an efficient backend Python C Application Programming Interface, and the use of a parallel environment, the Python SKHASH routine may compute mechanisms quicker than the HASH routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cynthia完成签到 ,获得积分10
1秒前
1秒前
1秒前
娟娟加油完成签到 ,获得积分10
1秒前
海盗船长完成签到,获得积分10
2秒前
3秒前
丘比特应助yxy采纳,获得10
4秒前
lyp发布了新的文献求助10
5秒前
哈哈王子完成签到,获得积分10
7秒前
SciGPT应助清爽聋五采纳,获得10
8秒前
990723发布了新的文献求助10
8秒前
8秒前
9秒前
jiang发布了新的文献求助10
9秒前
Neutrino完成签到,获得积分10
9秒前
张一诺021222完成签到,获得积分10
10秒前
洛尘完成签到 ,获得积分10
10秒前
李爱国应助lyp采纳,获得10
11秒前
15秒前
16秒前
茶包发布了新的文献求助30
17秒前
hjkk完成签到,获得积分10
18秒前
lxy完成签到 ,获得积分10
19秒前
22秒前
ghost发布了新的文献求助10
25秒前
LRxxx完成签到 ,获得积分10
25秒前
26秒前
俏皮的安萱完成签到 ,获得积分10
26秒前
yxy发布了新的文献求助10
26秒前
称心采枫完成签到 ,获得积分10
27秒前
Nana完成签到,获得积分10
29秒前
31秒前
李健的小迷弟应助ccq采纳,获得10
32秒前
元谷雪应助小甄甄采纳,获得10
32秒前
Lucas应助科研通管家采纳,获得10
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
JamesPei应助科研通管家采纳,获得10
33秒前
33秒前
天天快乐应助科研通管家采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023