SKHASH: A Python Package for Computing Earthquake Focal Mechanisms

Python(编程语言) 地质学 地震学 计算机科学 程序设计语言 计算机图形学(图像)
作者
Robert J. Skoumal,Jeanne L. Hardebeck,Peter M. Shearer
出处
期刊:Seismological Research Letters [Seismological Society of America]
卷期号:95 (4): 2519-2526 被引量:12
标识
DOI:10.1785/0220230329
摘要

Abstract We introduce a Python package for computing focal mechanism solutions. This algorithm, which we refer to as SKHASH, is largely based on the HASH algorithm originally written in Fortran over 20 yr ago. HASH innovated the use of suites of solutions, spanning the expected errors in polarities and takeoff angles, to estimate focal mechanism uncertainty. SKHASH benefits from new features with flexible input formats and allows users to take advantage of recent advances in constraining focal mechanisms for small magnitude or poorly recorded earthquakes. The 3D locations of earthquakes and the velocity models used are varied when finding acceptable solutions. As a result, source–receiver azimuths are reflective of errors from the earthquake locations and velocity models, in addition to the takeoff angles. Users can consider weighted P-wave first-motion polarities derived from traditional or machine-learning picks, cross-correlation consensus, and/or imputation techniques using SKHASH. Focal mechanism solutions can also be further constrained using traditional, machine learning, and/or cross-correlation consensus S/P amplitude ratios. With improved reporting of individual and collective P polarity and S/P amplitude misfits, users can better evaluate the success of the solutions and the quality of the measurements. The reporting also makes it easier to identify potential issues with metadata, including incorrectly reported station polarity reversals. In addition, by leveraging vectorized operations, taking advantage of an efficient backend Python C Application Programming Interface, and the use of a parallel environment, the Python SKHASH routine may compute mechanisms quicker than the HASH routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
铁甲小宝完成签到,获得积分10
1秒前
77完成签到,获得积分10
1秒前
SallyLuo完成签到,获得积分10
1秒前
2秒前
fdawn完成签到,获得积分10
2秒前
旺仔糖完成签到,获得积分20
3秒前
上官若男应助闹心采纳,获得10
4秒前
量子星尘发布了新的文献求助150
4秒前
大米发布了新的文献求助30
4秒前
秋风暖暖发布了新的文献求助10
5秒前
爆米花应助萧萧萧采纳,获得10
6秒前
微笑不可完成签到 ,获得积分10
6秒前
带着太阳去旅行完成签到,获得积分20
6秒前
千日粉发布了新的文献求助10
7秒前
7秒前
edtaa完成签到,获得积分10
8秒前
天天开心完成签到,获得积分10
8秒前
漱泉枕石发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
xu完成签到,获得积分20
10秒前
bob完成签到,获得积分10
13秒前
13秒前
田様应助鲤鱼烙采纳,获得10
14秒前
Sea_U应助Sylvie采纳,获得10
14秒前
张立敏发布了新的文献求助10
15秒前
淼队发布了新的文献求助10
15秒前
共享精神应助千日粉采纳,获得10
16秒前
长情萤发布了新的文献求助10
16秒前
16秒前
WIK发布了新的文献求助20
19秒前
19秒前
KBRS完成签到,获得积分10
19秒前
暮倦完成签到,获得积分20
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
lynn221204完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048792
求助须知:如何正确求助?哪些是违规求助? 4277060
关于积分的说明 13332258
捐赠科研通 4091605
什么是DOI,文献DOI怎么找? 2239138
邀请新用户注册赠送积分活动 1246031
关于科研通互助平台的介绍 1174599