SKHASH: A Python Package for Computing Earthquake Focal Mechanisms

Python(编程语言) 地质学 地震学 计算机科学 程序设计语言 计算机图形学(图像)
作者
Robert J. Skoumal,Jeanne L. Hardebeck,Peter M. Shearer
出处
期刊:Seismological Research Letters [Seismological Society of America]
卷期号:95 (4): 2519-2526 被引量:4
标识
DOI:10.1785/0220230329
摘要

Abstract We introduce a Python package for computing focal mechanism solutions. This algorithm, which we refer to as SKHASH, is largely based on the HASH algorithm originally written in Fortran over 20 yr ago. HASH innovated the use of suites of solutions, spanning the expected errors in polarities and takeoff angles, to estimate focal mechanism uncertainty. SKHASH benefits from new features with flexible input formats and allows users to take advantage of recent advances in constraining focal mechanisms for small magnitude or poorly recorded earthquakes. The 3D locations of earthquakes and the velocity models used are varied when finding acceptable solutions. As a result, source–receiver azimuths are reflective of errors from the earthquake locations and velocity models, in addition to the takeoff angles. Users can consider weighted P-wave first-motion polarities derived from traditional or machine-learning picks, cross-correlation consensus, and/or imputation techniques using SKHASH. Focal mechanism solutions can also be further constrained using traditional, machine learning, and/or cross-correlation consensus S/P amplitude ratios. With improved reporting of individual and collective P polarity and S/P amplitude misfits, users can better evaluate the success of the solutions and the quality of the measurements. The reporting also makes it easier to identify potential issues with metadata, including incorrectly reported station polarity reversals. In addition, by leveraging vectorized operations, taking advantage of an efficient backend Python C Application Programming Interface, and the use of a parallel environment, the Python SKHASH routine may compute mechanisms quicker than the HASH routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的涵瑶应助ller采纳,获得10
2秒前
zhangzhen完成签到,获得积分10
2秒前
Profeto应助西门妙晴采纳,获得10
3秒前
3秒前
我有一头小毛驴完成签到,获得积分10
4秒前
4秒前
duoduo完成签到,获得积分10
6秒前
6秒前
无语的麦片完成签到,获得积分10
7秒前
rrgogo发布了新的文献求助10
7秒前
吉祥高趙发布了新的文献求助10
8秒前
十三完成签到 ,获得积分10
10秒前
空白完成签到,获得积分10
11秒前
zzzzzzzz应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
zzzzzzzz应助科研通管家采纳,获得10
11秒前
饱满的鑫完成签到,获得积分10
11秒前
CAOHOU应助科研通管家采纳,获得10
11秒前
zzzzzzzz应助科研通管家采纳,获得10
12秒前
生动路人应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
Bryan应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
zzzzzzzz应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
15秒前
15秒前
19秒前
21秒前
充电宝应助开朗的睫毛膏采纳,获得10
21秒前
XLee完成签到,获得积分10
23秒前
科研安徒生完成签到,获得积分10
23秒前
25秒前
25秒前
乐乐应助慈ci采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010600
求助须知:如何正确求助?哪些是违规求助? 3550359
关于积分的说明 11305499
捐赠科研通 3284744
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499