BiFA: Remote Sensing Image Change Detection With Bitemporal Feature Alignment

变更检测 遥感 特征(语言学) 计算机科学 人工智能 特征提取 计算机视觉 模式识别(心理学) 地质学 语言学 哲学
作者
Haotian Zhang,Hao Chen,Chenyao Zhou,Keyan Chen,Chenyang Liu,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:20
标识
DOI:10.1109/tgrs.2024.3376673
摘要

Despite the success of deep learning-based change detection methods, their existing insufficiency in temporal (channel, spatial) and multi-scale alignment have rendered them insufficient capability in mitigating external factors (illumination changes and perspective differences, etc.) arising from different imaging conditions during change detection. In this paper, a Bi-temporal Feature Alignment (BiFA) model is proposed to produce a precise change detection map in a lightweight manner by reducing the impact of irrelevant factors. Specifically, for the temporal alignment, the Bi-temporal Interaction (BI) module is proposed to realize the alignment of the bi-temporal image channel level. Our intuition is introducing the bi-temporal interaction in the feature extraction stage may benefit suppressing the interference, such as illumination changes. Simultaneously, the Alignment module based on Differential Flow Field (ADFF) is proposed to explicitly estimate the offset of the bi-temporal image and realize their spatial level alignment to mitigate the inadequate registration resulting from different perspectives. Furthermore, for the multi-scale alignment, we introduce the Implicit Neural alignment Decoder (IND) to produce more refined prediction maps achieving precise alignment of multi-scale features by learning continuous image representations in coordinate space. Our BiFA outperforms other state-of-the-art methods on six datasets (such as the F1/IoU scores are improved by 2.70%/3.91%, 2.01%/2.94% on LEVIR+-CD and SYSU-CD, respectively) and displays greater robustness in cross-resolutions change detection. Our code is available at https://github.com/zmoka-zht/BiFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米玄发布了新的文献求助10
刚刚
jojo完成签到,获得积分10
1秒前
huohuo发布了新的文献求助10
1秒前
唬旌关注了科研通微信公众号
1秒前
1秒前
2秒前
2秒前
无花果应助沧海一粟米采纳,获得10
3秒前
宝贝丫头完成签到 ,获得积分10
3秒前
4秒前
肖礼成完成签到,获得积分10
4秒前
善学以致用应助小东西采纳,获得10
4秒前
4秒前
小章鱼完成签到 ,获得积分10
4秒前
5秒前
马大翔完成签到,获得积分0
5秒前
黑豆也完成签到,获得积分10
6秒前
aqz关闭了aqz文献求助
6秒前
丶Dawn完成签到,获得积分0
6秒前
自由的亦旋完成签到,获得积分10
6秒前
LHL发布了新的文献求助10
7秒前
7秒前
甜甜的元瑶完成签到,获得积分10
7秒前
7秒前
8秒前
勤劳尔琴发布了新的文献求助20
8秒前
8秒前
Linly发布了新的文献求助10
8秒前
郝薇薇薇薇儿完成签到,获得积分20
8秒前
8秒前
hhhh发布了新的文献求助10
8秒前
cleva完成签到,获得积分10
9秒前
不才发布了新的文献求助10
9秒前
宝海青完成签到,获得积分10
9秒前
科研废物发布了新的文献求助10
9秒前
huohuo完成签到,获得积分10
9秒前
九城完成签到,获得积分10
10秒前
怡然的扬完成签到 ,获得积分10
10秒前
高高的坤完成签到 ,获得积分10
10秒前
liyuheng20发布了新的文献求助10
11秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725848
求助须知:如何正确求助?哪些是违规求助? 3270880
关于积分的说明 9969512
捐赠科研通 2986307
什么是DOI,文献DOI怎么找? 1638161
邀请新用户注册赠送积分活动 777987
科研通“疑难数据库(出版商)”最低求助积分说明 747365