造血
生物
骨髓
祖细胞
骨髓增生性肿瘤
免疫学
干细胞
癌症研究
遗传学
骨髓纤维化
作者
Marc Usart,Jan Stetka,Damien Luque Paz,Nils Hansen,Quentin Kimmerlin,Tiago Almeida Fonseca,Melissa Lock,Lucia Kubovčáková,Reijo Karjalainen,Hui Hao-Shen,Anastasiya Börsch,Athimed El Taher,Jessica Schulz,Jean‐Christophe Leroux,Stephan Dirnhofer,Radek C. Skoda
出处
期刊:Blood
[American Society of Hematology]
日期:2024-03-17
被引量:1
标识
DOI:10.1182/blood.2023020270
摘要
Pegylated interferon alpha (pegIFNα) can induce molecular remissions in JAK2-V617F-positive myeloproliferative neoplasms (MPN) patients by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFNα. We investigated if DNMT3A loss leads to alterations in JAK2-V617F LT-HSCs functions conferring resistance to pegIFNα treatment in a mouse model of MPN and in hematopoietic progenitors from MPN patients. Long-term treatment with pegIFNα normalized blood parameters, reduced splenomegaly and JAK2-V617F-chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFNα in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F-chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared to VF were less prone to accumulate DNA damage and exit dormancy upon pegIFNα treatment. RNA-sequencing showed that IFNα induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ compared to VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFNα signaling. Transplantations of bone marrow from pegIFNα treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from MPN patients with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFNα exposure, whereas in patients with JAK2-V617F alone the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFNα combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.
科研通智能强力驱动
Strongly Powered by AbleSci AI