Deep learning‐based accurate diagnosis and quantitative evaluation of microvascular invasion in hepatocellular carcinoma on whole‐slide histopathology images

肝细胞癌 医学 接收机工作特性 人工智能 深度学习 诊断准确性 放射科 计算机科学 内科学
作者
Xiuming Zhang,Xiaotian Yu,Wenjie Liang,Zhong-Liang Zhang,Shengxuming Zhang,Linjie Xu,Han Zhang,Zunlei Feng,Mingli Song,Jing Zhang,Shi Yan Feng
出处
期刊:Cancer Medicine [Wiley]
卷期号:13 (5) 被引量:2
标识
DOI:10.1002/cam4.7104
摘要

Abstract Background Microvascular invasion (MVI) is an independent prognostic factor that is associated with early recurrence and poor survival after resection of hepatocellular carcinoma (HCC). However, the traditional pathology approach is relatively subjective, time‐consuming, and heterogeneous in the diagnosis of MVI. The aim of this study was to develop a deep‐learning model that could significantly improve the efficiency and accuracy of MVI diagnosis. Materials and Methods We collected H&E‐stained slides from 753 patients with HCC at the First Affiliated Hospital of Zhejiang University. An external validation set with 358 patients was selected from The Cancer Genome Atlas database. The deep‐learning model was trained by simulating the method used by pathologists to diagnose MVI. Model performance was evaluated with accuracy, precision, recall, F1 score, and the area under the receiver operating characteristic curve. Results We successfully developed a MVI artificial intelligence diagnostic model (MVI‐AIDM) which achieved an accuracy of 94.25% in the independent external validation set. The MVI positive detection rate of MVI‐AIDM was significantly higher than the results of pathologists. Visualization results demonstrated the recognition of micro MVIs that were difficult to differentiate by the traditional pathology. Additionally, the model provided automatic quantification of the number of cancer cells and spatial information regarding MVI. Conclusions We developed a deep learning diagnostic model, which performed well and improved the efficiency and accuracy of MVI diagnosis. The model provided spatial information of MVI that was essential to accurately predict HCC recurrence after surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小勇仔发布了新的文献求助10
1秒前
里里发布了新的文献求助10
2秒前
2秒前
开心果发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
里里完成签到,获得积分10
9秒前
11秒前
8R60d8应助1111采纳,获得10
12秒前
12秒前
思源应助开心果采纳,获得10
13秒前
13秒前
xiaoyi发布了新的文献求助10
13秒前
15秒前
丹青完成签到 ,获得积分10
16秒前
bai发布了新的文献求助10
17秒前
大勺发布了新的文献求助10
19秒前
Orange应助慈祥的梦露采纳,获得10
20秒前
泓7完成签到,获得积分20
21秒前
24秒前
粗心的含莲应助由由采纳,获得10
24秒前
李健应助yy超爱看文献采纳,获得10
24秒前
所所应助起起采纳,获得10
25秒前
李健应助初七采纳,获得10
26秒前
乐乐应助白昼采纳,获得10
26秒前
泓7发布了新的文献求助10
27秒前
芊瑶完成签到,获得积分10
27秒前
28秒前
田様应助bai采纳,获得10
29秒前
29秒前
31秒前
31秒前
Orange应助许七安采纳,获得10
32秒前
lmy完成签到 ,获得积分10
32秒前
32秒前
谦让若蕊完成签到,获得积分10
33秒前
33秒前
科研通AI2S应助稳重元菱采纳,获得10
34秒前
庄庄发布了新的文献求助10
34秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234164
求助须知:如何正确求助?哪些是违规求助? 2880584
关于积分的说明 8216048
捐赠科研通 2548171
什么是DOI,文献DOI怎么找? 1377575
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302