Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss

材料科学 衰减 电磁辐射 阻抗匹配 光电子学 低频 电阻抗 吸收(声学) 偶极子 介电损耗 反射损耗 电介质 凝聚态物理 光学 电信 复合材料 物理 计算机科学 复合数 量子力学
作者
Bo Cai,Lu Zhou,Pei‐Yan Zhao,Hualong Peng,Zhi‐Ling Hou,Pengfei Hu,Yuandong Niu,Guangsheng Wang
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1): 3299-3299 被引量:222
标识
DOI:10.1038/s41467-024-47537-5
摘要

Abstract Improving the absorption of electromagnetic waves at low-frequency bands (2-8 GHz) is crucial for the increasing electromagnetic (EM) pollution brought about by the innovation of the fifth generation (5G) communication technology. However, the poor impedance matching and intrinsic attenuation of material in low-frequency bands hinders the development of low-frequency electromagnetic wave absorbing (EMWA) materials. Here we propose an interface-induced dual-pinning mechanism and establish a magnetoelectric bias interface by constructing bilayer core-shell structures of NiFe 2 O 4 (NFO)@BiFeO 3 (BFO)@polypyrrole (PPy). Such heterogeneous interface could induce distinct magnetic pinning of the magnetic moment in the ferromagnetic NFO and dielectric pinning of the dipole rotation in PPy. The establishment of the dual-pinning effect resulted in optimized impedance and enhanced attenuation at low-frequency bands, leading to better EMWA performance. The minimum reflection loss (RL min ) at thickness of 4.43 mm reaches -65.30 dB (the optimal absorption efficiency of 99.99997%), and the effective absorption bandwidth (EAB) can almost cover C-band (4.72 ~ 7.04 GHz) with low filling of 15.0 wt.%. This work proposes a mechanism to optimize low-frequency impedance matching with electromagnetic wave (EMW) loss and pave an avenue for the research of high-performance low-frequency absorbers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助哈哈哈哈哈采纳,获得10
1秒前
1秒前
wwy应助西米采纳,获得10
1秒前
丘比特应助星星采纳,获得10
2秒前
Hiker发布了新的文献求助10
3秒前
谷云应助千秋竞岁采纳,获得10
3秒前
核桃发布了新的文献求助10
3秒前
5秒前
我是老大应助承一采纳,获得10
6秒前
哇冰1发布了新的文献求助10
7秒前
我刷的烧饼贼亮完成签到 ,获得积分10
8秒前
ChenK发布了新的文献求助10
8秒前
miz驳回了CodeCraft应助
9秒前
大梦龟棠发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
浮游应助金木水采纳,获得10
13秒前
星星发布了新的文献求助10
14秒前
慕青应助chayese采纳,获得20
14秒前
15秒前
核桃发布了新的文献求助10
16秒前
不知所措的咪完成签到,获得积分10
16秒前
翁依波完成签到,获得积分10
16秒前
AAA完成签到,获得积分10
17秒前
17秒前
Ting完成签到,获得积分10
18秒前
猕猴桃完成签到,获得积分10
18秒前
李伟峰发布了新的文献求助10
19秒前
nick完成签到,获得积分10
22秒前
myyyyy发布了新的文献求助10
23秒前
苑小苑完成签到,获得积分10
23秒前
24秒前
Amelia完成签到,获得积分10
25秒前
li完成签到 ,获得积分10
25秒前
26秒前
BowieHuang应助li采纳,获得10
27秒前
多巴胺完成签到,获得积分10
27秒前
进击的PhD应助老马采纳,获得30
30秒前
小明发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642999
求助须知:如何正确求助?哪些是违规求助? 4760428
关于积分的说明 15019750
捐赠科研通 4801483
什么是DOI,文献DOI怎么找? 2566801
邀请新用户注册赠送积分活动 1524658
关于科研通互助平台的介绍 1484255