Modelling and statistical interpretation of phenol adsorption behaviour of 3-Dimensional hybrid aerogel of waste-derived carbon nanotubes and graphene oxide

石墨烯 气凝胶 吸附 氧化物 苯酚 碳纳米管 口译(哲学) 材料科学 化学工程 碳纤维 纳米技术 有机化学 化学 复合材料 复合数 计算机科学 工程类 冶金 程序设计语言
作者
Marut Jain,Abhisek Sahoo,Deepti Mishra,Sadaf Aiman Khan,Kamal K. Pant,Zyta M. Ziora,Mark A. T. Blaskovich
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:: 151351-151351 被引量:2
标识
DOI:10.1016/j.cej.2024.151351
摘要

Phenol is a well-known organic pollutant that poses a threat to environmental sustainability due to its prevalence in industrial effluents. This chemical is frequently found in industrial waste and can have detrimental effects on ecosystems. In order to address this issue, effective remediation strategies are essential. Carbon-based adsorbents have emerged as a popular solution in current research. These adsorbents have demonstrated exceptional efficiency in removing phenol from water, presenting a promising solution for phenol adsorption and promoting sustainable water management. The current study aims to evaluate the capacity of a novel hybrid aerogel synthesized from spent catalyst-generated carbon nanotubes (GO/CNTs) and graphene oxide (GO). The phenol adsorption efficiency and behavior of GO/CNTs were compared with three different carbon-based adsorbents: graphene oxide (GO), magnetic graphene oxide (MGO), and graphene oxide aerogel (GOA). The adsorption isotherm modeling of experimental data showed that GO/CNTs exhibited the highest phenol adsorption efficiency of 204 mg/g, followed by GOA (141 mg/g), according to the Langmuir isotherm model. The detailed adsorption mechanism was correlated with isotherm, kinetics, and thermodynamics datasets, and further validated by in-depth statistical analysis of models, confirming the superior phenol adsorption capacity of the waste-derived hybrid aerogel. This research provides valuable insights into effective phenol removal from wastewater, emphasizing the promising performance of the novel GO/CNTs hybrid aerogel and providing optimized conditions for the adsorption process with statistical significance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
今后应助憨鬼憨切采纳,获得10
4秒前
4秒前
5秒前
greenPASS666完成签到,获得积分10
7秒前
KYN发布了新的文献求助10
7秒前
8秒前
meng发布了新的文献求助10
8秒前
9秒前
Leon发布了新的文献求助10
9秒前
axunQAQ发布了新的文献求助10
9秒前
111发布了新的文献求助10
10秒前
11秒前
cc发布了新的文献求助10
14秒前
程勋航完成签到,获得积分10
14秒前
HH完成签到,获得积分10
14秒前
陆千万完成签到,获得积分10
16秒前
我是125应助老疯智采纳,获得10
16秒前
LEE发布了新的文献求助10
16秒前
Leon完成签到,获得积分10
19秒前
愉快的紫丝完成签到,获得积分10
19秒前
21秒前
玩命的紫南完成签到 ,获得积分10
22秒前
22秒前
22秒前
剁辣椒蒸鱼头完成签到 ,获得积分10
24秒前
牛牛要当院士喽完成签到,获得积分10
24秒前
24秒前
香蕉觅云应助lyt采纳,获得10
25秒前
WJ发布了新的文献求助10
26秒前
27秒前
dbq完成签到 ,获得积分10
27秒前
Owen应助reck采纳,获得10
29秒前
王淳完成签到 ,获得积分10
29秒前
30秒前
31秒前
高高的天亦完成签到 ,获得积分10
32秒前
追寻书白完成签到,获得积分20
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849