材料科学
阳极
析氧
催化作用
电解质
金属
合金
化学工程
分解水
电化学
铂金
氧化物
无定形固体
电极
复合材料
冶金
有机化学
工程类
化学
光催化
物理化学
生物化学
作者
Xiaoxuan Yang,Jiashun Liang,Qiurong Shi,Michael J. Zachman,Sadia Kabir,Junwu Liang,Jing Zhu,Benjamin Slenker,Max Pupucevski,Natalia Macauley,A. Jeremy Kropf,Hao Zeng,Derek Strasser,Deborah J. Myers,Hui Xu,Zhenhua Zeng,Yushan Yan,Gang Wu
标识
DOI:10.1002/aenm.202400029
摘要
Abstract Alkaline anion‐exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth‐abundant platinum group metal (PGM)‐free catalysts. Herein, the third metal is incorporated into NiFe‐based catalysts to regulate their electronic structures and morphologies, aiming to achieve sufficient oxygen evolution reaction (OER) activity and performance in AEMWEs. The ternary NiFeM (M: Cu, Co, or Mn) catalysts are featured with multiple layered structures and nanofoam network morphologies, consisting of highly OER‐active amorphous Ni‐rich oxide shells and electrically conductive metallic alloy cores. The physical and electronic perturbations to the NiFe induced by a third element lead to a fine‐tuning of the redox ability of the metal sites at the reaction centers, which breaks the scaling relationship between OH* and O* intermediates at the reaction centers. Thus, the unique structural configuration and electronic regulation simultaneously benefit catalytic activity and performance improvements. These NiFeM nanofoam catalysts demonstrated promising anode performance in actual AEMWEs, comparable to the IrO 2 reference, especially at high current densities. Notably, using various electrolytes (e.g., KOH solution or pure water) for AEMWEs exhibited a different performance trend among studied NiFeM catalysts, likely due to dynamic changes of catalysts under various OER environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI