Using Pupil Diameter for Psychological Resilience Assessment in Medical Students Based on SVM and SHAP Model

支持向量机 随机森林 可解释性 计算机科学 人工智能 逻辑回归 机器学习
作者
Fayang Xiang,Li Zhang,Yidan Ye,Chuyue Xiong,Yanjie Zhang,Yan Hu,Jiang Du,Yi Zhou,Qiyue Deng,Xinke Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4260-4268 被引量:1
标识
DOI:10.1109/jbhi.2024.3390390
摘要

Effectively assessing psychological resilience for medical students is vital for identifying at-risk individuals and developing tailored interventions. At present, few studies have combined physiological indexes of the human body and machine learning for psychological resilience assessment. This study presents a novel approach that employs pupil diameter features and machine learning to predict psychological resilience risk objectively. Firstly, we designed a stimulus paradigm (via auditory and visual stimuli) and collected pupil diameter data from participants using eye-tracking technology. Secondly, the pupil data was preprocessed, including linear interpolation, blink detection, and subtractive baseline correction. Thirdly, statistical metrics were extracted and optimal feature subsets were obtained by Recursive Feature Elimination with Cross-Validation (RFECV). Subsequently, the classification models, including Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost), were trained. The experimental results show that the SVM model has the best performance, and its balance accuracy, recall, and AUC reach 0.906, 0.89, and 0.932, respectively. Finally, we leveraged the Shapley additive explanation (SHAP) model for interpretability analysis. It revealed auditory stimuli have a more significant effect than visual stimuli in psychological resilience assessment. These findings suggested that pupil diameter could be a vital metric for assessing psychological resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助爱学习的小花生采纳,获得10
2秒前
and发布了新的文献求助10
2秒前
英俊的铭应助研猫采纳,获得10
2秒前
pingpinglver完成签到,获得积分20
3秒前
花痴的向雁完成签到 ,获得积分10
3秒前
乖乖完成签到,获得积分10
4秒前
Chnp完成签到,获得积分10
4秒前
萧水白应助忧虑的土豆采纳,获得10
5秒前
高yq发布了新的文献求助20
7秒前
Chnp发布了新的文献求助30
7秒前
月光下的魔术师完成签到,获得积分10
7秒前
清风完成签到 ,获得积分10
8秒前
做科研怎么不会疯呢完成签到,获得积分10
8秒前
and完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
11秒前
迪西完成签到 ,获得积分10
11秒前
不配.应助以乐其志采纳,获得10
11秒前
11秒前
乐乐乐乐乐乐应助kkjl采纳,获得10
12秒前
12秒前
12秒前
孤竹雅弦完成签到,获得积分10
13秒前
14秒前
14秒前
大白小杨发布了新的文献求助10
15秒前
jean52158发布了新的文献求助10
16秒前
17秒前
参宿七发布了新的文献求助10
17秒前
小吴shz发布了新的文献求助10
18秒前
20秒前
20秒前
21秒前
18922406869发布了新的文献求助30
24秒前
灵零铃发布了新的文献求助10
25秒前
欣喜的不惜完成签到,获得积分10
27秒前
27秒前
28秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128954
求助须知:如何正确求助?哪些是违规求助? 2779683
关于积分的说明 7744576
捐赠科研通 2434926
什么是DOI,文献DOI怎么找? 1293779
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530