An efficient targeted design for real-time defect detection of surface defects

计算机科学 曲面(拓扑) 实时计算 几何学 数学
作者
Wenqi Cui,Kechen Song,Xiujian Jia,Hongshu Chen,Yu Zhang,Yunhui Yan,Wenying Jiang
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:178: 108174-108174 被引量:6
标识
DOI:10.1016/j.optlaseng.2024.108174
摘要

In practical industrial applications, the inference speed of deep learning models directly affects the efficiency of industrial production. Therefore, the lightweight real-time detection method of surface defects is an essential task in the industrial process. We need to achieve a favorable balance between efficiency and accuracy since the rising demand for production efficiency. However, most of the existing pixel-level detection methods 1) often adopt huge computational overhead to learn rich features, resulting in slow inference speed and 2) show a performance degradation when applied to different industrial surface defect scenarios. To this end, we propose an efficient targeted design (ETD) for real-time defect detection of surface defects. It consists of two branches: (i) an efficient feature enhancement branch, with global aggregation module (GAM) and cross-scale guide module (CGM) to gradually enhance defect features, and (ii) an edge posterior branch, with verification module (VM) and scale interaction module (SIM) to implicitly guide the boundary details of defects. Specifically, while inheriting this framework, we reconsider the relationship between precision, parameters, and speed so that our model can be applied to different industrial scenarios. Extensive experimental results on four datasets indicate that ETD outperforms other leading saliency detection methods. Meanwhile, our method ETD-S achieves 347 FPS on ESDIs-SOD dataset, 254 FPS on Crack500 dataset, 227 FPS on NRSD-MN dataset and 273 FPS on DAGM dataset. Additionally, we conduct real-time analysis of ETD on an intelligent paradigm for industrial surface defect detection, further demonstrating its efficacy in practical scenarios. ETD demonstrates effective detection performance while achieving a lightweight architecture, which can be implemented using various deep learning frameworks, showcasing substantial potential for real-time surface defect detection. The source code and dataset are publicly available at https://github.com/VDT-2048/ETD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJ_2完成签到 ,获得积分10
4秒前
自信放光芒~完成签到 ,获得积分10
5秒前
CC完成签到,获得积分0
6秒前
老和山完成签到,获得积分10
6秒前
梅川库子完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
shawn完成签到 ,获得积分10
9秒前
LWJ要毕业完成签到 ,获得积分10
9秒前
wongtx完成签到,获得积分10
12秒前
迈克老狼完成签到 ,获得积分10
12秒前
CJW完成签到 ,获得积分10
14秒前
lhn完成签到 ,获得积分10
15秒前
灰灰完成签到,获得积分10
16秒前
丽莉发布了新的文献求助10
18秒前
大个应助亚铁氰化钾采纳,获得10
18秒前
Wayne完成签到 ,获得积分10
20秒前
rkay完成签到,获得积分10
21秒前
嘻嘻哈哈完成签到 ,获得积分10
22秒前
灰鸽舞完成签到 ,获得积分10
25秒前
赖建琛完成签到 ,获得积分10
27秒前
水草帽完成签到 ,获得积分10
28秒前
ken131完成签到 ,获得积分0
33秒前
CipherSage应助淡然幻梦采纳,获得10
33秒前
Ava应助ewovk采纳,获得10
34秒前
水草帽完成签到 ,获得积分10
37秒前
Stone完成签到,获得积分10
37秒前
SimonShaw完成签到,获得积分10
40秒前
haochi完成签到,获得积分10
45秒前
keleboys完成签到 ,获得积分10
52秒前
刘雨森完成签到 ,获得积分10
53秒前
彩色映雁完成签到 ,获得积分10
54秒前
汪汪淬冰冰完成签到,获得积分10
54秒前
cq_2完成签到,获得积分0
54秒前
Macro完成签到 ,获得积分10
56秒前
喵喵完成签到 ,获得积分10
58秒前
Owen应助科研通管家采纳,获得10
58秒前
单小芫完成签到 ,获得积分10
59秒前
小禾一定行完成签到 ,获得积分10
1分钟前
w0r1d完成签到 ,获得积分10
1分钟前
知秋完成签到 ,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5117808
求助须知:如何正确求助?哪些是违规求助? 4323935
关于积分的说明 13470888
捐赠科研通 4156676
什么是DOI,文献DOI怎么找? 2278049
邀请新用户注册赠送积分活动 1279883
关于科研通互助平台的介绍 1218362