An efficient targeted design for real-time defect detection of surface defects

计算机科学 曲面(拓扑) 实时计算 几何学 数学
作者
Wenqi Cui,Kechen Song,Xiujian Jia,Hongshu Chen,Yu Zhang,Yunhui Yan,Wenying Jiang
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:178: 108174-108174 被引量:6
标识
DOI:10.1016/j.optlaseng.2024.108174
摘要

In practical industrial applications, the inference speed of deep learning models directly affects the efficiency of industrial production. Therefore, the lightweight real-time detection method of surface defects is an essential task in the industrial process. We need to achieve a favorable balance between efficiency and accuracy since the rising demand for production efficiency. However, most of the existing pixel-level detection methods 1) often adopt huge computational overhead to learn rich features, resulting in slow inference speed and 2) show a performance degradation when applied to different industrial surface defect scenarios. To this end, we propose an efficient targeted design (ETD) for real-time defect detection of surface defects. It consists of two branches: (i) an efficient feature enhancement branch, with global aggregation module (GAM) and cross-scale guide module (CGM) to gradually enhance defect features, and (ii) an edge posterior branch, with verification module (VM) and scale interaction module (SIM) to implicitly guide the boundary details of defects. Specifically, while inheriting this framework, we reconsider the relationship between precision, parameters, and speed so that our model can be applied to different industrial scenarios. Extensive experimental results on four datasets indicate that ETD outperforms other leading saliency detection methods. Meanwhile, our method ETD-S achieves 347 FPS on ESDIs-SOD dataset, 254 FPS on Crack500 dataset, 227 FPS on NRSD-MN dataset and 273 FPS on DAGM dataset. Additionally, we conduct real-time analysis of ETD on an intelligent paradigm for industrial surface defect detection, further demonstrating its efficacy in practical scenarios. ETD demonstrates effective detection performance while achieving a lightweight architecture, which can be implemented using various deep learning frameworks, showcasing substantial potential for real-time surface defect detection. The source code and dataset are publicly available at https://github.com/VDT-2048/ETD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
bkagyin应助程青青采纳,获得10
2秒前
Criminology34举报鸽子求助涉嫌违规
2秒前
2秒前
2秒前
玩命的糖豆完成签到,获得积分10
3秒前
4秒前
Ming完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
鲁西西发布了新的文献求助10
7秒前
细腻灯泡完成签到,获得积分10
8秒前
莎莎发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6应助efjbvb采纳,获得10
9秒前
药药55发布了新的文献求助10
9秒前
梦幻海发布了新的文献求助10
11秒前
11秒前
武武武完成签到,获得积分10
11秒前
不鞠一格完成签到 ,获得积分20
13秒前
细腻灯泡发布了新的文献求助20
13秒前
Criminology34举报hadern求助涉嫌违规
13秒前
15秒前
研友_VZG7GZ应助Eason采纳,获得10
15秒前
csxx发布了新的文献求助10
16秒前
Dorianne关注了科研通微信公众号
18秒前
19秒前
19秒前
orixero应助莎莎采纳,获得10
19秒前
Duqianying发布了新的文献求助20
20秒前
零距离发布了新的文献求助10
20秒前
20秒前
21秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
扣扣尼哇发布了新的文献求助10
23秒前
24秒前
xgx984发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421991
求助须知:如何正确求助?哪些是违规求助? 4536983
关于积分的说明 14155650
捐赠科研通 4453570
什么是DOI,文献DOI怎么找? 2442949
邀请新用户注册赠送积分活动 1434359
关于科研通互助平台的介绍 1411431