An efficient targeted design for real-time defect detection of surface defects

计算机科学 曲面(拓扑) 实时计算 几何学 数学
作者
Wenqi Cui,Kechen Song,Xiujian Jia,Hongshu Chen,Yu Zhang,Yunhui Yan,Wenying Jiang
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:178: 108174-108174 被引量:6
标识
DOI:10.1016/j.optlaseng.2024.108174
摘要

In practical industrial applications, the inference speed of deep learning models directly affects the efficiency of industrial production. Therefore, the lightweight real-time detection method of surface defects is an essential task in the industrial process. We need to achieve a favorable balance between efficiency and accuracy since the rising demand for production efficiency. However, most of the existing pixel-level detection methods 1) often adopt huge computational overhead to learn rich features, resulting in slow inference speed and 2) show a performance degradation when applied to different industrial surface defect scenarios. To this end, we propose an efficient targeted design (ETD) for real-time defect detection of surface defects. It consists of two branches: (i) an efficient feature enhancement branch, with global aggregation module (GAM) and cross-scale guide module (CGM) to gradually enhance defect features, and (ii) an edge posterior branch, with verification module (VM) and scale interaction module (SIM) to implicitly guide the boundary details of defects. Specifically, while inheriting this framework, we reconsider the relationship between precision, parameters, and speed so that our model can be applied to different industrial scenarios. Extensive experimental results on four datasets indicate that ETD outperforms other leading saliency detection methods. Meanwhile, our method ETD-S achieves 347 FPS on ESDIs-SOD dataset, 254 FPS on Crack500 dataset, 227 FPS on NRSD-MN dataset and 273 FPS on DAGM dataset. Additionally, we conduct real-time analysis of ETD on an intelligent paradigm for industrial surface defect detection, further demonstrating its efficacy in practical scenarios. ETD demonstrates effective detection performance while achieving a lightweight architecture, which can be implemented using various deep learning frameworks, showcasing substantial potential for real-time surface defect detection. The source code and dataset are publicly available at https://github.com/VDT-2048/ETD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Timing侠发布了新的文献求助10
刚刚
坦率的文龙完成签到,获得积分10
1秒前
快乐滑板发布了新的文献求助10
1秒前
1秒前
清爽绣连完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
情怀应助顾思凡采纳,获得10
3秒前
zaadasd发布了新的文献求助20
3秒前
玖玖完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
冬嘉完成签到,获得积分10
5秒前
Ava应助DADA采纳,获得10
5秒前
现代的访曼应助nandiaozhimu采纳,获得20
6秒前
6秒前
sakuraking完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
7秒前
7秒前
wangerer发布了新的文献求助10
7秒前
8秒前
qinqin发布了新的文献求助10
8秒前
8秒前
春天发布了新的文献求助10
9秒前
zhenya发布了新的文献求助20
9秒前
脑洞疼应助Lone采纳,获得10
9秒前
haoliu完成签到,获得积分10
9秒前
心灵美的石头完成签到,获得积分10
10秒前
想喝奶茶完成签到,获得积分10
10秒前
10秒前
11秒前
江屿发布了新的文献求助10
11秒前
Dracoon发布了新的文献求助10
11秒前
阿柒完成签到,获得积分10
11秒前
12秒前
12秒前
bingo完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326