An efficient targeted design for real-time defect detection of surface defects

计算机科学 曲面(拓扑) 实时计算 几何学 数学
作者
Wenqi Cui,Kechen Song,Xitong Jia,Hongshu Chen,Yu Zhang,Yunhui Yan,Wenying Jiang
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:178: 108174-108174
标识
DOI:10.1016/j.optlaseng.2024.108174
摘要

In practical industrial applications, the inference speed of deep learning models directly affects the efficiency of industrial production. Therefore, the lightweight real-time detection method of surface defects is an essential task in the industrial process. We need to achieve a favorable balance between efficiency and accuracy since the rising demand for production efficiency. However, most of the existing pixel-level detection methods 1) often adopt huge computational overhead to learn rich features, resulting in slow inference speed and 2) show a performance degradation when applied to different industrial surface defect scenarios. To this end, we propose an efficient targeted design (ETD) for real-time defect detection of surface defects. It consists of two branches: (i) an efficient feature enhancement branch, with global aggregation module (GAM) and cross-scale guide module (CGM) to gradually enhance defect features, and (ii) an edge posterior branch, with verification module (VM) and scale interaction module (SIM) to implicitly guide the boundary details of defects. Specifically, while inheriting this framework, we reconsider the relationship between precision, parameters, and speed so that our model can be applied to different industrial scenarios. Extensive experimental results on four datasets indicate that ETD outperforms other leading saliency detection methods. Meanwhile, our method ETD-S achieves 347 FPS on ESDIs-SOD dataset, 254 FPS on Crack500 dataset, 227 FPS on NRSD-MN dataset and 273 FPS on DAGM dataset. Additionally, we conduct real-time analysis of ETD on an intelligent paradigm for industrial surface defect detection, further demonstrating its efficacy in practical scenarios. ETD demonstrates effective detection performance while achieving a lightweight architecture, which can be implemented using various deep learning frameworks, showcasing substantial potential for real-time surface defect detection. The source code and dataset are publicly available at https://github.com/VDT-2048/ETD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
little_forest发布了新的文献求助10
1秒前
科研狗发布了新的文献求助10
1秒前
YUMI完成签到,获得积分10
1秒前
Akim应助YASMINE采纳,获得30
1秒前
执着夏岚发布了新的文献求助10
1秒前
香蕉觅云应助阳光采纳,获得10
1秒前
48662发布了新的文献求助10
2秒前
Luobu_521完成签到,获得积分10
2秒前
牟翎完成签到,获得积分10
3秒前
liuqizong123完成签到,获得积分10
4秒前
可靠访蕊完成签到 ,获得积分10
4秒前
4秒前
星辰发布了新的文献求助10
4秒前
里歪歪完成签到,获得积分10
4秒前
可爱的函函应助五角星采纳,获得10
5秒前
e任思完成签到 ,获得积分10
5秒前
好困应助沉默白猫采纳,获得10
5秒前
糯米兹发布了新的文献求助10
6秒前
洁琼93完成签到,获得积分10
6秒前
7秒前
7秒前
慕青应助yu采纳,获得10
8秒前
轻松鸿涛完成签到,获得积分10
8秒前
Pyrrha发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
大模型应助鳗鱼香魔采纳,获得10
10秒前
10秒前
思源应助48662采纳,获得10
10秒前
10秒前
vv发布了新的文献求助10
11秒前
11秒前
星辰完成签到,获得积分10
11秒前
syccc完成签到,获得积分10
14秒前
张同学完成签到,获得积分10
14秒前
14秒前
所所应助小魏哥哥采纳,获得10
15秒前
星辰发布了新的文献求助10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123309
求助须知:如何正确求助?哪些是违规求助? 2773824
关于积分的说明 7719656
捐赠科研通 2429529
什么是DOI,文献DOI怎么找? 1290348
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251