Design and Machine Learning Prediction of In Situ Grown PDA-Stabilized MOF (UiO-66-NH2) Membrane for Low-Pressure Separation of Emulsified Oily Wastewater

材料科学 化学工程 超亲水性 生物污染 渗透 陶瓷 结垢 介孔材料 纳米技术 有机化学 复合材料 接触角 化学 催化作用 冶金 工程类 生物化学
作者
Jamilu Usman,Sani I. Abba,Nadeem Baig,Nidal Abu‐Zahra,Shadi W. Hasan,Isam H. Aljundi
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (13): 16271-16289 被引量:16
标识
DOI:10.1021/acsami.4c00752
摘要

Significant progress has been made in designing advanced membranes; however, persistent challenges remain due to their reduced permeation rates and a propensity for substantial fouling. These factors continue to pose significant barriers to the effective utilization of membranes in the separation of oil-in-water emulsions. Metal–organic frameworks (MOFs) are considered promising materials for such applications; however, they encounter three key challenges when applied to the separation of oil from water: (a) lack of water stability; (b) difficulty in producing defect-free membranes; and (c) unresolved issue of stabilizing the MOF separating layer on the ceramic membrane (CM) support. In this study, a defect-free hydrolytically stable zirconium-based MOF separating layer was formed through a two-step method: first, by in situ growth of UiO-66-NH2 MOF into the voids of polydopamine (PDA)-functionalized CM during the solvothermal process, and then by facilitating the self-assembly of UiO-66-NH2 with PDA using a pressurized dead-end assembly. A stable MOF separating layer was attained by enriching the ceramic support with amines and hydroxyl groups using PDA, which assisted in the assembly and stabilization of UiO-66-NH2. The PDA-s-UiO-66-NH2–CM membrane displayed air superhydrophilicity and underwater superoleophobicity, demonstrating its oil resistance and high antifouling behavior. The PDA-s-UiO-66-NH2–CM membrane has shown exceptionally high permeability and separation capacity for challenging oil-in-water emulsions. This is attributed to numerous nanochannels from the membrane and its high resistance to oil adhesion. The membranes showed excellent stability over 15 continuous test cycles, which indicates that the developed MOFs separating layers have a low tendency to be clogged by oil droplets during separation. Machine learning-based Gaussian process regression (GPR) models as nonparametric kernel-based probabilistic models were employed to predict the performance efficiency of the PDA-s-UiO-66-NH2–CM membrane in oil-in-water separation. The outcomes were compared with the support vector machine (SVM) and decision tree (DT) algorithm. This efficiency includes various metrics related to its separation accuracy, and the models were developed through feature engineering to identify and utilize the most significant factors affecting the membrane's performance. The results proved the reliability of GPR optimization with the highest prediction accuracy in the validation phase. The average percentage increase of the GPR model compared to the SVM and DT model was 6.11 and 42.94%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲸1107完成签到 ,获得积分10
刚刚
XXaaxxxx发布了新的文献求助10
刚刚
坐等时光看轻自己完成签到,获得积分10
2秒前
2秒前
YY88687321发布了新的文献求助10
2秒前
庄冬丽完成签到,获得积分10
2秒前
2秒前
acutelily完成签到,获得积分10
2秒前
哟西小FO发布了新的文献求助50
2秒前
研友_LjbjzL完成签到,获得积分10
3秒前
周小笛完成签到 ,获得积分10
3秒前
qwe123发布了新的文献求助10
3秒前
3秒前
champagne发布了新的文献求助20
3秒前
可爱的函函应助blUe采纳,获得10
4秒前
调研昵称发布了新的文献求助30
4秒前
4秒前
beibei发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助吕广德采纳,获得10
5秒前
Cool完成签到,获得积分10
5秒前
光亮笑蓝完成签到,获得积分10
5秒前
chenyutong发布了新的文献求助10
5秒前
tianji完成签到,获得积分10
6秒前
任同学完成签到,获得积分10
6秒前
暴龙战士图图完成签到,获得积分10
6秒前
李爱国应助玲子7采纳,获得10
7秒前
嫁个养熊猫的完成签到 ,获得积分10
7秒前
7秒前
7秒前
wenqing发布了新的文献求助30
7秒前
清水小镇发布了新的文献求助10
8秒前
机灵的寻云完成签到 ,获得积分10
8秒前
9秒前
陈子怡完成签到,获得积分10
9秒前
0109发布了新的文献求助10
9秒前
xiaoxioayixi完成签到 ,获得积分10
10秒前
XXaaxxxx完成签到,获得积分20
10秒前
缪尹盛完成签到,获得积分10
10秒前
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155301
求助须知:如何正确求助?哪些是违规求助? 2806177
关于积分的说明 7868353
捐赠科研通 2464650
什么是DOI,文献DOI怎么找? 1311885
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601880