PD42-02 PSMA PET/CT RADIOMICS: ASSESSING ADVERSE PATHOLOGICAL RISK AND PROTEOMIC BIOMARKER CORRELATIONS IN PROSTATE CANCER

无线电技术 前列腺癌 病态的 医学 生物标志物 肿瘤科 癌症 内科学 病理 放射科 生物 生物化学
作者
Wenhao Zhu,Yongxiang Tang,Xiaomei Gao,Minfeng Chen,Shuo Hu,Yi Cai
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:211 (5S)
标识
DOI:10.1097/01.ju.0001008560.54103.65.02
摘要

You have accessJournal of UrologyProstate Cancer: Markers II (PD42)1 May 2024PD42-02 PSMA PET/CT RADIOMICS: ASSESSING ADVERSE PATHOLOGICAL RISK AND PROTEOMIC BIOMARKER CORRELATIONS IN PROSTATE CANCER Wenhao Zhu, Yongxiang Tang, Xiaomei Gao, Minfeng Chen, Shuo Hu, and Yi Cai Wenhao ZhuWenhao Zhu , Yongxiang TangYongxiang Tang , Xiaomei GaoXiaomei Gao , Minfeng ChenMinfeng Chen , Shuo HuShuo Hu , and Yi CaiYi Cai View All Author Informationhttps://doi.org/10.1097/01.JU.0001008560.54103.65.02AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: Prostate cancer (PCa) is a highly heterogeneous malignancy. The early identification of adverse pathological characteristics in PCa during a controllable stage of the tumor is a critical factor in improving patient prognosis. This study employed radiomics machine learning models to predict the aggressiveness of PCa and identify quantitative radiomic features and protein biomarkers associated with adverse pathological traits. Consequently, the goal was to construct a multi-omics marker that enhances risk stratification. METHODS: In this retrospective study, 191 patients diagnosed with prostate cancer (PCa) or benign prostatic hyperplasia (BPH) at the time of diagnosis and confirmed via pathology after undergoing a 68Ga-PSMA-11 PET/CT scan were included. Under the guidance of PSMA-PET, CT images were utilized for anatomical localization, with prostate contours manually delineated and radiomic features extracted. Six machine learning algorithms were employed to construct radiomics models for predicting malignancies and combinations of adverse pathological features (Gleason score (GS), ISUP group, pathological stage (pT), lymph node infiltration (LNI), and perineural invasion (PNI)). Feature selection was conducted using two methods, minimum redundancy maximum relevance (mRMR) and LASSO, to identify the quantitative radiomic features with optimal predictive capacity. Additionally, proteomics was performed on 39 patients to identify protein biomarkers of adverse pathological features at the molecular level in PCa. Correlation analysis was used to refine the associations between quantitative radiomic features and protein biomarkers. RESULTS: The optimal radiomics model based on machine learning methods achieved an area under the curve (AUC) of 0.938 (95% CI: 0.893 to 0.983) for predicting malignant prostate lesions and an AUC of 0.916 (95% CI: 0.854 to 0.977) for adverse pathological feature combinations in the test set. The validation set yielded AUC values of 0.918 (95% CI: 0.848 to 0.989) for malignancy prediction and 0.855 (95% CI: 0.728 to 0.983) for adverse feature combinations. Three quantitative radiomic features and ten protein molecules associated with adverse pathological characteristics were identified. Moreover, the study revealed a significant correlation between quantitative radiomic features and protein biomarkers, with radioproteomic analysis highlighting the potential impact of molecular changes in protein molecules on imaging biomarkers. CONCLUSIONS: The machine learning models developed from 68Ga-PSMA-11 PET/CT radiomic features can stratify patients with clinically meaningful insights, guiding risk stratification, and revealing potential links between quantitative radiomic characteristics and protein biomarkers. Source of Funding: His research was supported by the key Research and Development program of Hunan Province (2021SK2014, 2023SK2017), the Science and Technology Innovation Team Talent Project of Hunan Province (2021 RC4056), the National Natural Science Foundation of China (82272907, 81974397, 91859207, 81771873), the clinical research foundation of the National Clinical Research Center for Geriatric Diseases (XIANGYA; 2020LNJJ01), and the Fundamental Research Funds for the Central Universities of Central South university © 2024 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 211Issue 5SMay 2024Page: e892 Advertisement Copyright & Permissions© 2024 by American Urological Association Education and Research, Inc.Metrics Author Information Wenhao Zhu More articles by this author Yongxiang Tang More articles by this author Xiaomei Gao More articles by this author Minfeng Chen More articles by this author Shuo Hu More articles by this author Yi Cai More articles by this author Expand All Advertisement PDF downloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大牛顿完成签到,获得积分10
1秒前
1秒前
崔雨旋完成签到,获得积分10
2秒前
2秒前
LL发布了新的文献求助10
2秒前
雨碎寒江发布了新的文献求助10
3秒前
娃娃菜妮发布了新的文献求助10
4秒前
5秒前
wangxin完成签到,获得积分10
5秒前
阿鹿462发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
FashionBoy应助畅快海白采纳,获得10
8秒前
xww完成签到,获得积分10
9秒前
大气代亦发布了新的文献求助10
10秒前
mawanyu发布了新的文献求助10
10秒前
迟大猫应助黑化小狗采纳,获得30
12秒前
Ava应助烜66采纳,获得10
13秒前
含蓄虔纹发布了新的文献求助10
14秒前
追寻的问玉完成签到 ,获得积分10
14秒前
Metakuro发布了新的文献求助10
14秒前
席香薇完成签到,获得积分10
15秒前
16秒前
大个应助浮生采纳,获得10
16秒前
nicai完成签到,获得积分20
17秒前
科研通AI5应助bld8256采纳,获得30
17秒前
17秒前
打打应助麻团儿采纳,获得10
18秒前
18秒前
18秒前
香蕉觅云应助waoller1采纳,获得10
18秒前
学术屎壳郎完成签到,获得积分10
19秒前
19秒前
hua发布了新的文献求助10
19秒前
19秒前
希望天下0贩的0应助孟孟采纳,获得10
20秒前
贰叁发布了新的文献求助10
20秒前
20秒前
畅快海白发布了新的文献求助10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490263
求助须知:如何正确求助?哪些是违规求助? 3077255
关于积分的说明 9148229
捐赠科研通 2769499
什么是DOI,文献DOI怎么找? 1519724
邀请新用户注册赠送积分活动 704238
科研通“疑难数据库(出版商)”最低求助积分说明 702113