遗传学
生物
全基因组关联研究
单核苷酸多态性
遗传关联
自闭症谱系障碍
自闭症
候选基因
基因
基因型
医学
精神科
作者
Yu Chen,Wenqiang Li,Luxian Lv,Weihua Yue
标识
DOI:10.1093/schbul/sbae044
摘要
Abstract Background and Hypothesis The synaptic pruning hypothesis posits that schizophrenia (SCZ) and autism spectrum disorder (ASD) may represent opposite ends of neurodevelopmental disorders: individuals with ASD exhibit an overabundance of synapses and connections while SCZ was characterized by excessive pruning of synapses and a reduction. Given the strong genetic predisposition of both disorders, we propose a shared genetic component, with certain loci having differential regulatory impacts. Study Design Genome-Wide single nucleotide polymorphism (SNP) data of European descent from SCZ (N cases = 53 386, N controls = 77 258) and ASD (N cases = 18 381, N controls = 27 969) were analyzed. We used genetic correlation, bivariate causal mixture model, conditional false discovery rate method, colocalization, Transcriptome-Wide Association Study (TWAS), and Phenome-Wide Association Study (PheWAS) to investigate the genetic overlap and gene expression pattern. Study Results We found a positive genetic correlation between SCZ and ASD (rg = .26, SE = 0.01, P = 7.87e−14), with 11 genomic loci jointly influencing both conditions (conjFDR <0.05). Functional analysis highlights a significant enrichment of shared genes during early to mid-fetal developmental stages. A notable genetic region on chromosome 17q21.31 (lead SNP rs2696609) showed strong evidence of colocalization (PP.H4.abf = 0.85). This SNP rs2696609 is linked to many imaging-derived brain phenotypes. TWAS indicated opposing gene expression patterns (primarily pseudogenes and long noncoding RNAs [lncRNAs]) for ASD and SCZ in the 17q21.31 region and some genes (LRRC37A4P, LINC02210, and DND1P1) exhibit considerable variation in the cerebellum across the lifespan. Conclusions Our findings support a shared genetic basis for SCZ and ASD. A common genetic variant, rs2696609, located in the Chr17q21.31 locus, may exert differential risk regulation on SCZ and ASD by altering brain structure. Future studies should focus on the role of pseudogenes, lncRNAs, and cerebellum in synaptic pruning and neurodevelopmental disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI