Data-Driven Modeling for Gait Phase Recognition in a Wearable Exoskeleton Using Estimated Forces

外骨骼 步态 可穿戴计算机 计算机科学 人工智能 地面反作用力 动力外骨骼 鉴定(生物学) 基本事实 数据驱动 机器学习 模拟 物理医学与康复 生物 运动学 物理 经典力学 嵌入式系统 医学 植物
作者
Kyeong-Won Park,Jungsu Choi,Kyoungchul Kong
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 3072-3086 被引量:5
标识
DOI:10.1109/tro.2023.3262108
摘要

Accurate identification of gait phases is critical in effectively assessing the assistance provided by lower limb exoskeletons. In this study, we propose a novel gait phase recognition system called ObsNet to analyze the gait of individuals with spinal cord injuries (SCI). To ensure the reliable use of exoskeletons, it is essential to maintain practicality and avoid exposing the system to unnecessary risks of fatigue, inaccuracy, or incompatibility with human-centered devices. Therefore, we propose a new approach to characterize exoskeletal-assisted gait by estimating forces on exoskeletal joints during walking. Although these estimated forces are potentially useful for detecting gait phases, their nonlinearities make it challenging for existing algorithms to generalize accurately. To address this challenge, we introduce a data-driven model that simultaneously captures both feature extraction and order dependencies, and enhance its performance through a threshold-based compensational method to filter out momentary errors. We evaluated the effectiveness of ObsNet through robotic walking experiments with two practical users with complete paraplegia. Our results indicate that ObsNet outperformed state-of-the-art methods that use joint information and other recurrent networks in identifying the gait phases of individuals with SCI ( $\boldsymbol{p}< \mathbf{0.05}$ ). We also observed reliable imitation of ground truth after compensation. Overall, our research highlights the potential of wearable technology to improve the daily lives of individuals with disabilities through accurate and stable state assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文献下载神器完成签到,获得积分10
刚刚
mufulee发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI2S应助嘿哈采纳,获得10
2秒前
Hello应助jeff采纳,获得10
2秒前
wanghao婷发布了新的文献求助10
2秒前
科研通AI6应助rob采纳,获得10
2秒前
Akim应助典雅的俊驰采纳,获得10
3秒前
3秒前
打打应助心绪采纳,获得10
3秒前
copper完成签到,获得积分10
3秒前
buta完成签到,获得积分10
3秒前
4秒前
monster完成签到 ,获得积分10
4秒前
浩瀚完成签到,获得积分10
4秒前
仙女完成签到 ,获得积分10
4秒前
遇见无铭发布了新的文献求助30
5秒前
111发布了新的文献求助10
5秒前
5秒前
谢尔顿完成签到,获得积分10
5秒前
5秒前
66发布了新的文献求助10
6秒前
6秒前
abner完成签到,获得积分10
6秒前
7秒前
7秒前
zzw完成签到,获得积分10
7秒前
坦率的面包完成签到 ,获得积分10
8秒前
烟花应助小鱼干采纳,获得10
8秒前
科研通AI6应助鲸鱼采纳,获得10
9秒前
10秒前
lululu完成签到 ,获得积分10
10秒前
10秒前
qi发布了新的文献求助10
11秒前
Owen应助hhgcc采纳,获得10
11秒前
斯文静竹发布了新的文献求助10
11秒前
Miyya完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871