Data-Driven Modeling for Gait Phase Recognition in a Wearable Exoskeleton Using Estimated Forces

外骨骼 步态 可穿戴计算机 计算机科学 人工智能 地面反作用力 动力外骨骼 鉴定(生物学) 基本事实 数据驱动 机器学习 模拟 物理医学与康复 生物 运动学 物理 经典力学 嵌入式系统 医学 植物
作者
Kyeong-Won Park,Jungsu Choi,Kyoungchul Kong
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 3072-3086 被引量:5
标识
DOI:10.1109/tro.2023.3262108
摘要

Accurate identification of gait phases is critical in effectively assessing the assistance provided by lower limb exoskeletons. In this study, we propose a novel gait phase recognition system called ObsNet to analyze the gait of individuals with spinal cord injuries (SCI). To ensure the reliable use of exoskeletons, it is essential to maintain practicality and avoid exposing the system to unnecessary risks of fatigue, inaccuracy, or incompatibility with human-centered devices. Therefore, we propose a new approach to characterize exoskeletal-assisted gait by estimating forces on exoskeletal joints during walking. Although these estimated forces are potentially useful for detecting gait phases, their nonlinearities make it challenging for existing algorithms to generalize accurately. To address this challenge, we introduce a data-driven model that simultaneously captures both feature extraction and order dependencies, and enhance its performance through a threshold-based compensational method to filter out momentary errors. We evaluated the effectiveness of ObsNet through robotic walking experiments with two practical users with complete paraplegia. Our results indicate that ObsNet outperformed state-of-the-art methods that use joint information and other recurrent networks in identifying the gait phases of individuals with SCI ( $\boldsymbol{p}< \mathbf{0.05}$ ). We also observed reliable imitation of ground truth after compensation. Overall, our research highlights the potential of wearable technology to improve the daily lives of individuals with disabilities through accurate and stable state assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
达乐发布了新的文献求助10
刚刚
弹幕发布了新的文献求助80
刚刚
刚刚
刚刚
jessicazhong发布了新的文献求助10
1秒前
lonely完成签到,获得积分10
1秒前
tianwa关注了科研通微信公众号
1秒前
温馨完成签到,获得积分10
2秒前
2秒前
milewangzi发布了新的文献求助10
2秒前
3秒前
Owen应助PiaoGuo采纳,获得10
3秒前
图图完成签到,获得积分20
3秒前
lalala发布了新的文献求助10
4秒前
酷不哭哭完成签到,获得积分10
4秒前
wusj120发布了新的文献求助10
4秒前
4秒前
朝朝发布了新的文献求助10
4秒前
跳跃的铭发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
呼呼爱学习完成签到 ,获得积分10
7秒前
情怀应助科研不通采纳,获得10
8秒前
隐形曼青应助林先生采纳,获得10
9秒前
9秒前
科研通AI6应助one采纳,获得10
9秒前
9秒前
耶格尔发布了新的文献求助10
9秒前
10秒前
先生范发布了新的文献求助10
10秒前
孤独水杯发布了新的文献求助10
10秒前
tianwa发布了新的文献求助10
11秒前
典雅的羿发布了新的文献求助10
11秒前
腼腆的戾发布了新的文献求助10
11秒前
Lina完成签到,获得积分10
12秒前
孤沨完成签到 ,获得积分10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442780
求助须知:如何正确求助?哪些是违规求助? 4552892
关于积分的说明 14239536
捐赠科研通 4474264
什么是DOI,文献DOI怎么找? 2451974
邀请新用户注册赠送积分活动 1442887
关于科研通互助平台的介绍 1418632