Influence of Image Processing on Radiomic Features From Magnetic Resonance Imaging

重复性 人工智能 组内相关 图像处理 模式识别(心理学) 重采样 扫描仪 一致相关系数 特征(语言学) 数学 直方图 计算机科学 再现性 统计 图像(数学) 哲学 语言学
作者
Barbara Wichtmann,F Harder,Kilian Weiss,Stefan O. Schönberg,Ulrike Attenberger,Hatem Alkadhi,Daniel Pinto dos Santos,Bettina Baeßler
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (3): 199-208 被引量:24
标识
DOI:10.1097/rli.0000000000000921
摘要

Before implementing radiomics in routine clinical practice, comprehensive knowledge about the repeatability and reproducibility of radiomic features is required. The aim of this study was to systematically investigate the influence of image processing parameters on radiomic features from magnetic resonance imaging (MRI) in terms of feature values as well as test-retest repeatability.Utilizing a phantom consisting of 4 onions, 4 limes, 4 kiwifruits, and 4 apples, we acquired a test-retest dataset featuring 3 of the most commonly used MRI sequences on a 3 T scanner, namely, a T1-weighted, a T2-weighted, and a fluid-attenuated inversion recovery sequence, each at high and low resolution. After semiautomatic image segmentation, image processing with systematic variation of image processing parameters was performed, including spatial resampling, intensity discretization, and intensity rescaling. For each respective image processing setting, a total of 45 radiomic features were extracted, corresponding to the following 7 matrices/feature classes: conventional indices, histogram matrix, shape matrix, gray-level zone length matrix, gray-level run length matrix, neighboring gray-level dependence matrix, and gray-level cooccurrence matrix. Systematic differences of individual features between different resampling steps were assessed using 1-way analysis of variance with Tukey-type post hoc comparisons to adjust for multiple testing. Test-retest repeatability of radiomic features was measured using the concordance correlation coefficient, dynamic range, and intraclass correlation coefficient.Image processing influenced radiological feature values. Regardless of the acquired sequence and feature class, significant differences ( P < 0.05) in feature values were found when the size of the resampled voxels was too large, that is, bigger than 3 mm. Almost all higher-order features depended strongly on intensity discretization. The effects of intensity rescaling were negligible except for some features derived from T1-weighted sequences. For all sequences, the percentage of repeatable features (concordance correlation coefficient and dynamic range ≥ 0.9) varied considerably depending on the image processing settings. The optimal image processing setting to achieve the highest percentage of stable features varied per sequence. Irrespective of image processing, the fluid-attenuated inversion recovery sequence in high-resolution overall yielded the highest number of stable features in comparison with the other sequences (89% vs 64%-78% for the respective optimal image processing settings). Across all sequences, the most repeatable features were generally obtained for a spatial resampling close to the originally acquired voxel size and an intensity discretization to at least 32 bins.Variation of image processing parameters has a significant impact on the values of radiomic features as well as their repeatability. Furthermore, the optimal image processing parameters differ for each MRI sequence. Therefore, it is recommended that these processing parameters be determined in corresponding test-retest scans before clinical application. Extensive repeatability, reproducibility, and validation studies as well as standardization are required before quantitative image analysis and radiomics can be reliably translated into routine clinical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷心菜完成签到,获得积分10
1秒前
Patrick完成签到,获得积分10
1秒前
从容襄完成签到,获得积分10
1秒前
2秒前
核桃酥完成签到,获得积分20
2秒前
华仔应助王汉韬采纳,获得10
2秒前
2秒前
andyxrz发布了新的文献求助10
3秒前
醉舞烟罗发布了新的文献求助10
3秒前
3秒前
3秒前
yaoyao完成签到 ,获得积分20
4秒前
阳光总在风雨后完成签到,获得积分10
4秒前
洁净路灯完成签到 ,获得积分10
4秒前
11111完成签到,获得积分10
5秒前
黄豆芽完成签到,获得积分20
6秒前
xlx发布了新的文献求助10
6秒前
诚心闭月完成签到,获得积分10
6秒前
7秒前
7秒前
小中完成签到,获得积分10
7秒前
Akim应助Jin采纳,获得10
7秒前
zyj完成签到,获得积分10
8秒前
MrFamous发布了新的文献求助10
8秒前
fxx2021完成签到,获得积分10
8秒前
lbx发布了新的文献求助10
8秒前
xqwwqx发布了新的文献求助10
9秒前
9秒前
9秒前
活力的妙之完成签到 ,获得积分10
9秒前
充电宝应助坚强乌龟采纳,获得10
9秒前
xhy发布了新的文献求助10
10秒前
kingwill给zinnia的求助进行了留言
10秒前
大胆夜绿发布了新的文献求助10
10秒前
传统的凝天完成签到,获得积分10
10秒前
11秒前
尼克的朱迪完成签到,获得积分10
11秒前
11秒前
大个应助谷大喵唔采纳,获得10
11秒前
23发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672