亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Influence of Image Processing on Radiomic Features From Magnetic Resonance Imaging

重复性 人工智能 组内相关 图像处理 模式识别(心理学) 重采样 扫描仪 一致相关系数 特征(语言学) 数学 直方图 计算机科学 再现性 统计 图像(数学) 哲学 语言学
作者
Barbara Wichtmann,F Harder,Kilian Weiss,Stefan O. Schönberg,Ulrike Attenberger,Hatem Alkadhi,Daniel Pinto dos Santos,Bettina Baeßler
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
被引量:33
标识
DOI:10.1097/rli.0000000000000921
摘要

Before implementing radiomics in routine clinical practice, comprehensive knowledge about the repeatability and reproducibility of radiomic features is required. The aim of this study was to systematically investigate the influence of image processing parameters on radiomic features from magnetic resonance imaging (MRI) in terms of feature values as well as test-retest repeatability.Utilizing a phantom consisting of 4 onions, 4 limes, 4 kiwifruits, and 4 apples, we acquired a test-retest dataset featuring 3 of the most commonly used MRI sequences on a 3 T scanner, namely, a T1-weighted, a T2-weighted, and a fluid-attenuated inversion recovery sequence, each at high and low resolution. After semiautomatic image segmentation, image processing with systematic variation of image processing parameters was performed, including spatial resampling, intensity discretization, and intensity rescaling. For each respective image processing setting, a total of 45 radiomic features were extracted, corresponding to the following 7 matrices/feature classes: conventional indices, histogram matrix, shape matrix, gray-level zone length matrix, gray-level run length matrix, neighboring gray-level dependence matrix, and gray-level cooccurrence matrix. Systematic differences of individual features between different resampling steps were assessed using 1-way analysis of variance with Tukey-type post hoc comparisons to adjust for multiple testing. Test-retest repeatability of radiomic features was measured using the concordance correlation coefficient, dynamic range, and intraclass correlation coefficient.Image processing influenced radiological feature values. Regardless of the acquired sequence and feature class, significant differences ( P < 0.05) in feature values were found when the size of the resampled voxels was too large, that is, bigger than 3 mm. Almost all higher-order features depended strongly on intensity discretization. The effects of intensity rescaling were negligible except for some features derived from T1-weighted sequences. For all sequences, the percentage of repeatable features (concordance correlation coefficient and dynamic range ≥ 0.9) varied considerably depending on the image processing settings. The optimal image processing setting to achieve the highest percentage of stable features varied per sequence. Irrespective of image processing, the fluid-attenuated inversion recovery sequence in high-resolution overall yielded the highest number of stable features in comparison with the other sequences (89% vs 64%-78% for the respective optimal image processing settings). Across all sequences, the most repeatable features were generally obtained for a spatial resampling close to the originally acquired voxel size and an intensity discretization to at least 32 bins.Variation of image processing parameters has a significant impact on the values of radiomic features as well as their repeatability. Furthermore, the optimal image processing parameters differ for each MRI sequence. Therefore, it is recommended that these processing parameters be determined in corresponding test-retest scans before clinical application. Extensive repeatability, reproducibility, and validation studies as well as standardization are required before quantitative image analysis and radiomics can be reliably translated into routine clinical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
8秒前
cy0824完成签到 ,获得积分10
12秒前
yyy完成签到 ,获得积分10
20秒前
SciGPT应助科研通管家采纳,获得10
35秒前
失眠奥特曼完成签到,获得积分10
48秒前
48秒前
李李发布了新的文献求助10
58秒前
李李完成签到,获得积分20
1分钟前
刘宇童完成签到,获得积分10
1分钟前
1分钟前
Jasper应助李李采纳,获得10
1分钟前
chenting完成签到 ,获得积分10
2分钟前
小付完成签到,获得积分10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
烟消云散完成签到,获得积分10
2分钟前
汉堡包应助梦梦采纳,获得10
2分钟前
2分钟前
Orange应助reerwt采纳,获得10
3分钟前
annis完成签到,获得积分10
3分钟前
3分钟前
含蓄绿竹完成签到 ,获得积分10
3分钟前
3分钟前
reerwt发布了新的文献求助10
3分钟前
Liufgui应助sss采纳,获得10
3分钟前
梦梦完成签到,获得积分10
3分钟前
4分钟前
reerwt完成签到,获得积分20
4分钟前
4分钟前
陈元元K完成签到,获得积分10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
4分钟前
梦梦发布了新的文献求助10
4分钟前
4分钟前
caca完成签到,获得积分0
4分钟前
科研通AI2S应助YYYCCCCC采纳,获得10
5分钟前
海鸥别叫了完成签到 ,获得积分10
6分钟前
云霞完成签到 ,获得积分10
6分钟前
朴素的山蝶完成签到 ,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256354
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228