Influence of Image Processing on Radiomic Features From Magnetic Resonance Imaging

重复性 人工智能 组内相关 图像处理 模式识别(心理学) 重采样 扫描仪 一致相关系数 特征(语言学) 数学 直方图 计算机科学 再现性 统计 图像(数学) 哲学 语言学
作者
Barbara Wichtmann,F Harder,Kilian Weiss,Stefan O. Schönberg,Ulrike Attenberger,Hatem Alkadhi,Daniel Pinto dos Santos,Bettina Baeßler
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
被引量:33
标识
DOI:10.1097/rli.0000000000000921
摘要

Before implementing radiomics in routine clinical practice, comprehensive knowledge about the repeatability and reproducibility of radiomic features is required. The aim of this study was to systematically investigate the influence of image processing parameters on radiomic features from magnetic resonance imaging (MRI) in terms of feature values as well as test-retest repeatability.Utilizing a phantom consisting of 4 onions, 4 limes, 4 kiwifruits, and 4 apples, we acquired a test-retest dataset featuring 3 of the most commonly used MRI sequences on a 3 T scanner, namely, a T1-weighted, a T2-weighted, and a fluid-attenuated inversion recovery sequence, each at high and low resolution. After semiautomatic image segmentation, image processing with systematic variation of image processing parameters was performed, including spatial resampling, intensity discretization, and intensity rescaling. For each respective image processing setting, a total of 45 radiomic features were extracted, corresponding to the following 7 matrices/feature classes: conventional indices, histogram matrix, shape matrix, gray-level zone length matrix, gray-level run length matrix, neighboring gray-level dependence matrix, and gray-level cooccurrence matrix. Systematic differences of individual features between different resampling steps were assessed using 1-way analysis of variance with Tukey-type post hoc comparisons to adjust for multiple testing. Test-retest repeatability of radiomic features was measured using the concordance correlation coefficient, dynamic range, and intraclass correlation coefficient.Image processing influenced radiological feature values. Regardless of the acquired sequence and feature class, significant differences ( P < 0.05) in feature values were found when the size of the resampled voxels was too large, that is, bigger than 3 mm. Almost all higher-order features depended strongly on intensity discretization. The effects of intensity rescaling were negligible except for some features derived from T1-weighted sequences. For all sequences, the percentage of repeatable features (concordance correlation coefficient and dynamic range ≥ 0.9) varied considerably depending on the image processing settings. The optimal image processing setting to achieve the highest percentage of stable features varied per sequence. Irrespective of image processing, the fluid-attenuated inversion recovery sequence in high-resolution overall yielded the highest number of stable features in comparison with the other sequences (89% vs 64%-78% for the respective optimal image processing settings). Across all sequences, the most repeatable features were generally obtained for a spatial resampling close to the originally acquired voxel size and an intensity discretization to at least 32 bins.Variation of image processing parameters has a significant impact on the values of radiomic features as well as their repeatability. Furthermore, the optimal image processing parameters differ for each MRI sequence. Therefore, it is recommended that these processing parameters be determined in corresponding test-retest scans before clinical application. Extensive repeatability, reproducibility, and validation studies as well as standardization are required before quantitative image analysis and radiomics can be reliably translated into routine clinical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋若风完成签到,获得积分10
刚刚
爆米花应助孙文杰采纳,获得10
1秒前
小艾完成签到,获得积分10
1秒前
明理萃完成签到 ,获得积分10
2秒前
苏黎世发布了新的文献求助10
2秒前
3秒前
乔安发布了新的文献求助10
3秒前
炫哥IRIS发布了新的文献求助10
3秒前
LaTeXer给积极行天的求助进行了留言
4秒前
ww发布了新的文献求助10
4秒前
Carlo完成签到,获得积分10
5秒前
蓝胖子完成签到 ,获得积分10
6秒前
7秒前
终生科研徒刑完成签到 ,获得积分10
7秒前
8秒前
ysc发布了新的文献求助20
10秒前
11秒前
LKX完成签到 ,获得积分10
11秒前
纯真的诗兰完成签到,获得积分10
12秒前
自然函完成签到 ,获得积分10
12秒前
等一个晴天完成签到,获得积分10
13秒前
as发布了新的文献求助100
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
个性元枫应助科研通管家采纳,获得10
13秒前
kingwill应助科研通管家采纳,获得20
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
13秒前
慕青应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
14秒前
海东来应助科研通管家采纳,获得30
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
个性元枫应助科研通管家采纳,获得10
14秒前
茕凡桃七完成签到,获得积分10
14秒前
大个应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048