Influence of Image Processing on Radiomic Features From Magnetic Resonance Imaging

重复性 人工智能 组内相关 图像处理 模式识别(心理学) 重采样 扫描仪 一致相关系数 特征(语言学) 数学 直方图 计算机科学 再现性 统计 图像(数学) 哲学 语言学
作者
Barbara Wichtmann,F Harder,Kilian Weiss,Stefan O. Schönberg,Ulrike Attenberger,Hatem Alkadhi,Daniel Pinto dos Santos,Bettina Baeßler
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
被引量:33
标识
DOI:10.1097/rli.0000000000000921
摘要

Before implementing radiomics in routine clinical practice, comprehensive knowledge about the repeatability and reproducibility of radiomic features is required. The aim of this study was to systematically investigate the influence of image processing parameters on radiomic features from magnetic resonance imaging (MRI) in terms of feature values as well as test-retest repeatability.Utilizing a phantom consisting of 4 onions, 4 limes, 4 kiwifruits, and 4 apples, we acquired a test-retest dataset featuring 3 of the most commonly used MRI sequences on a 3 T scanner, namely, a T1-weighted, a T2-weighted, and a fluid-attenuated inversion recovery sequence, each at high and low resolution. After semiautomatic image segmentation, image processing with systematic variation of image processing parameters was performed, including spatial resampling, intensity discretization, and intensity rescaling. For each respective image processing setting, a total of 45 radiomic features were extracted, corresponding to the following 7 matrices/feature classes: conventional indices, histogram matrix, shape matrix, gray-level zone length matrix, gray-level run length matrix, neighboring gray-level dependence matrix, and gray-level cooccurrence matrix. Systematic differences of individual features between different resampling steps were assessed using 1-way analysis of variance with Tukey-type post hoc comparisons to adjust for multiple testing. Test-retest repeatability of radiomic features was measured using the concordance correlation coefficient, dynamic range, and intraclass correlation coefficient.Image processing influenced radiological feature values. Regardless of the acquired sequence and feature class, significant differences ( P < 0.05) in feature values were found when the size of the resampled voxels was too large, that is, bigger than 3 mm. Almost all higher-order features depended strongly on intensity discretization. The effects of intensity rescaling were negligible except for some features derived from T1-weighted sequences. For all sequences, the percentage of repeatable features (concordance correlation coefficient and dynamic range ≥ 0.9) varied considerably depending on the image processing settings. The optimal image processing setting to achieve the highest percentage of stable features varied per sequence. Irrespective of image processing, the fluid-attenuated inversion recovery sequence in high-resolution overall yielded the highest number of stable features in comparison with the other sequences (89% vs 64%-78% for the respective optimal image processing settings). Across all sequences, the most repeatable features were generally obtained for a spatial resampling close to the originally acquired voxel size and an intensity discretization to at least 32 bins.Variation of image processing parameters has a significant impact on the values of radiomic features as well as their repeatability. Furthermore, the optimal image processing parameters differ for each MRI sequence. Therefore, it is recommended that these processing parameters be determined in corresponding test-retest scans before clinical application. Extensive repeatability, reproducibility, and validation studies as well as standardization are required before quantitative image analysis and radiomics can be reliably translated into routine clinical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小仙女完成签到 ,获得积分10
刚刚
三三完成签到 ,获得积分10
1秒前
浪迹青丘狐完成签到 ,获得积分10
3秒前
栗子完成签到 ,获得积分10
10秒前
杰帅完成签到,获得积分10
14秒前
ESC惠子子子子子完成签到 ,获得积分10
17秒前
合适的自行车完成签到 ,获得积分10
18秒前
愉快的傲之完成签到 ,获得积分10
24秒前
麦子完成签到 ,获得积分10
25秒前
干净傲霜完成签到 ,获得积分10
26秒前
加油少年完成签到,获得积分10
31秒前
jw完成签到,获得积分10
31秒前
感性的俊驰完成签到 ,获得积分10
31秒前
乐天生完成签到,获得积分10
33秒前
七爷完成签到 ,获得积分10
35秒前
jaytotti完成签到,获得积分10
37秒前
46秒前
herpes完成签到 ,获得积分0
49秒前
不秃燃的小老弟完成签到 ,获得积分10
49秒前
wushuimei完成签到 ,获得积分10
52秒前
sunwsmile完成签到 ,获得积分10
57秒前
manmanzhong完成签到 ,获得积分10
59秒前
勤恳冰淇淋完成签到 ,获得积分10
1分钟前
1分钟前
sadh2完成签到 ,获得积分10
1分钟前
害羞的雁易完成签到 ,获得积分10
1分钟前
1分钟前
叶y发布了新的文献求助10
1分钟前
悟空完成签到 ,获得积分10
1分钟前
曾经小伙完成签到 ,获得积分10
1分钟前
无花果应助xiu采纳,获得10
1分钟前
wuyyuan完成签到 ,获得积分10
1分钟前
大脸猫完成签到 ,获得积分10
1分钟前
专注的觅云完成签到 ,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xiu完成签到,获得积分10
1分钟前
吴静完成签到 ,获得积分10
1分钟前
momo完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325418
求助须知:如何正确求助?哪些是违规求助? 4465883
关于积分的说明 13895000
捐赠科研通 4358174
什么是DOI,文献DOI怎么找? 2393938
邀请新用户注册赠送积分活动 1387356
关于科研通互助平台的介绍 1358111