清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Influence of Image Processing on Radiomic Features From Magnetic Resonance Imaging

重复性 人工智能 组内相关 图像处理 模式识别(心理学) 重采样 扫描仪 一致相关系数 特征(语言学) 数学 直方图 计算机科学 再现性 统计 图像(数学) 哲学 语言学
作者
Barbara Wichtmann,F Harder,Kilian Weiss,Stefan O. Schönberg,Ulrike Attenberger,Hatem Alkadhi,Daniel Pinto dos Santos,Bettina Baeßler
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
被引量:33
标识
DOI:10.1097/rli.0000000000000921
摘要

Before implementing radiomics in routine clinical practice, comprehensive knowledge about the repeatability and reproducibility of radiomic features is required. The aim of this study was to systematically investigate the influence of image processing parameters on radiomic features from magnetic resonance imaging (MRI) in terms of feature values as well as test-retest repeatability.Utilizing a phantom consisting of 4 onions, 4 limes, 4 kiwifruits, and 4 apples, we acquired a test-retest dataset featuring 3 of the most commonly used MRI sequences on a 3 T scanner, namely, a T1-weighted, a T2-weighted, and a fluid-attenuated inversion recovery sequence, each at high and low resolution. After semiautomatic image segmentation, image processing with systematic variation of image processing parameters was performed, including spatial resampling, intensity discretization, and intensity rescaling. For each respective image processing setting, a total of 45 radiomic features were extracted, corresponding to the following 7 matrices/feature classes: conventional indices, histogram matrix, shape matrix, gray-level zone length matrix, gray-level run length matrix, neighboring gray-level dependence matrix, and gray-level cooccurrence matrix. Systematic differences of individual features between different resampling steps were assessed using 1-way analysis of variance with Tukey-type post hoc comparisons to adjust for multiple testing. Test-retest repeatability of radiomic features was measured using the concordance correlation coefficient, dynamic range, and intraclass correlation coefficient.Image processing influenced radiological feature values. Regardless of the acquired sequence and feature class, significant differences ( P < 0.05) in feature values were found when the size of the resampled voxels was too large, that is, bigger than 3 mm. Almost all higher-order features depended strongly on intensity discretization. The effects of intensity rescaling were negligible except for some features derived from T1-weighted sequences. For all sequences, the percentage of repeatable features (concordance correlation coefficient and dynamic range ≥ 0.9) varied considerably depending on the image processing settings. The optimal image processing setting to achieve the highest percentage of stable features varied per sequence. Irrespective of image processing, the fluid-attenuated inversion recovery sequence in high-resolution overall yielded the highest number of stable features in comparison with the other sequences (89% vs 64%-78% for the respective optimal image processing settings). Across all sequences, the most repeatable features were generally obtained for a spatial resampling close to the originally acquired voxel size and an intensity discretization to at least 32 bins.Variation of image processing parameters has a significant impact on the values of radiomic features as well as their repeatability. Furthermore, the optimal image processing parameters differ for each MRI sequence. Therefore, it is recommended that these processing parameters be determined in corresponding test-retest scans before clinical application. Extensive repeatability, reproducibility, and validation studies as well as standardization are required before quantitative image analysis and radiomics can be reliably translated into routine clinical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
woods完成签到,获得积分10
34秒前
58秒前
陈一完成签到 ,获得积分10
1分钟前
李木禾完成签到 ,获得积分10
1分钟前
桐桐应助西西娃儿采纳,获得10
1分钟前
紫枫完成签到,获得积分10
2分钟前
2分钟前
3分钟前
西西娃儿发布了新的文献求助10
3分钟前
万能图书馆应助西西娃儿采纳,获得10
3分钟前
清秀LL完成签到 ,获得积分10
4分钟前
Hello应助xun采纳,获得10
4分钟前
李娇完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
xun发布了新的文献求助10
5分钟前
顾矜应助xun采纳,获得10
5分钟前
花花糖果完成签到 ,获得积分10
7分钟前
7分钟前
xun发布了新的文献求助10
7分钟前
小羊咩完成签到 ,获得积分10
8分钟前
shushu完成签到 ,获得积分10
8分钟前
8分钟前
xun发布了新的文献求助10
8分钟前
yujie完成签到 ,获得积分10
9分钟前
cheney完成签到 ,获得积分10
9分钟前
amberzyc应助欢呼亦绿采纳,获得10
9分钟前
Hello应助只与你采纳,获得10
9分钟前
orixero应助xun采纳,获得10
9分钟前
9分钟前
恒牙完成签到 ,获得积分10
9分钟前
9分钟前
只与你发布了新的文献求助10
9分钟前
gwbk完成签到,获得积分10
9分钟前
只与你完成签到,获得积分10
10分钟前
汪鸡毛完成签到 ,获得积分10
10分钟前
小燕子完成签到 ,获得积分10
10分钟前
lanxinge完成签到 ,获得积分10
10分钟前
薛家泰完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293164
求助须知:如何正确求助?哪些是违规求助? 4443432
关于积分的说明 13831191
捐赠科研通 4327040
什么是DOI,文献DOI怎么找? 2375250
邀请新用户注册赠送积分活动 1370606
关于科研通互助平台的介绍 1335313